18.08.2023

IoT - Internet of Things Интернет вещей. Интернет вещей (в примерах) — что это такое и как он работает Подробнее о решениях крок


Материал из Википедии - свободной энциклопедии

Коллаж об «интернете вещей» в быту

Концепция сформулирована в 1999 году как осмысление перспектив широкого применения средств радиочастотной идентификации для взаимодействия физических предметов между собой и с внешним окружением. Наполнение концепции «интернета вещей» многообразным технологическим содержанием и внедрение практических решений для её реализации начиная с 2010-х годов считается устойчивой тенденцией в информационных технологиях , прежде всего, благодаря повсеместному распространению беспроводных сетей , появлению облачных вычислений , развитию технологий межмашинного взаимодействия , началу активного перехода на IPv6 и освоению программно-конфигурируемых сетей .

На 2017 год термин «Интернет вещей» распространяется не только на киберфизические системы для «домашнего» применения, но и на промышленные объекты. Развитие концепции «Интеллектуальных зданий» получило название «Building Internet of Things » [неизвестный термин ] (BIoT, «Интернет вещей в здании»), развитие распределённой сетевой инфраструктуры в АСУ ТП привело к появлению «Industrial Internet of Things » (IIoT, «Индустриальный (промышленный) интернет вещей»)

История

Концепция и термин для неё впервые сформулированы основателем исследовательской группы Auto-ID (англ. ) при Кевином Эштоном (англ. Kevin Ashton ) в 1999 году на презентации для руководства Procter & Gamble . В презентации рассказывалось о том, как всеобъемлющее внедрение радиочастотных меток сможет видоизменить систему управления логистическими цепями в корпорации .

Период с 2008 по 2009 год аналитики корпорации Cisco считают «настоящим рождением „интернета вещей“», так как, по их оценкам, именно в этом промежутке количество устройств, подключённых к глобальной сети, превысило численность населения Земли , тем самым «интернет людей» стал «интернетом вещей».

Технологии

Средства идентификации

Задействование в «интернете вещей» предметов физического мира, не обязательно оснащённых средствами подключения к сетям передачи данных, требует применения технологий идентификации этих предметов («вещей»). Хотя толчком для появления концепции стала технология RFID , но в качестве таких технологий могут использоваться все средства, применяемые для автоматической идентификации : оптически распознаваемые идентификаторы (штрих-коды , Data Matrix , QR-коды), средства определения местонахождения в режиме реального времени . При всеобъемлющем распространении «интернета вещей» принципиально обеспечить уникальность идентификаторов объектов, что, в свою очередь, требует стандартизации.

Для объектов, непосредственно подключённых к интернет-сетям, традиционный идентификатор - MAC-адрес сетевого адаптера, позволяющий идентифицировать устройство на канальном уровне, при этом диапазон доступных адресов практически неисчерпаем (2 48 адресов в пространстве MAC-48), а использование идентификатора канального уровня не слишком удобно для приложений. Более широкие возможности по идентификации для таких устройств даёт протокол IPv6 , обеспечивающий уникальными адресами сетевого уровня не менее 300 млн устройств на одного жителя Земли.

Средства измерения

Особую роль в интернете вещей играют средства измерения, обеспечивающие преобразование сведений о внешней среде в машиночитаемые данные, и тем самым наполняющие вычислительную среду значимой информацией. Используется широкий класс средств измерения , от элементарных датчиков (например, температуры, давления, освещённости), приборов учёта потребления (таких, как интеллектуальные счётчики) до сложных интегрированных измерительных систем. В рамках концепции «интернета вещей» принципиально объединение средств измерения в сети (такие, как беспроводные датчиковые сети , измерительные комплексы), за счёт чего возможно построение систем межмашинного взаимодействия.

Как особая практическая проблема внедрения «интернета вещей» отмечается необходимость обеспечения максимальной автономности средств измерения, прежде всего, проблема энергоснабжения датчиков. Нахождение эффективных решений, обеспечивающих автономное питание сенсоров (использование фотоэлементов , преобразование энергии вибрации, воздушных потоков, использование беспроводной передачи электричества), позволяет масштабировать сенсорные сети без повышения затрат на обслуживание (в виде смены батареек или подзарядки аккумуляторов датчиков).

Средства передачи данных

Спектр возможных технологий передачи данных охватывает все возможные средства беспроводных и проводных сетей .

Для беспроводной передачи данных особо важную роль в построении «интернета вещей» играют такие качества, как эффективность в условиях низких скоростей, отказоустойчивость, адаптивность, возможность самоорганизации. Основной интерес в этом качестве представляет стандарт IEEE 802.15.4 , определяющий физический слой и управление доступом для организации энергоэффективных персональных сетей, и являющийся основой для таких протоколов, как ZigBee , WirelessHart , MiWi , 6LoWPAN , LPWAN .

Среди проводных технологий важную роль в проникновении «интернета вещей» играют решения PLC - технологии построения сетей передачи данных по линиям электропередачи , так как во многих приложениях присутствует доступ к электросетям (например, торговые автоматы , банкоматы , интеллектуальные счётчики , контроллеры освещения изначально подключены к сети электроснабжения). 6LoWPAN , реализующий слой IPv6 как над IEEE 802.15.4, так и над PLC, будучи открытым протоколом, стандартизуемым IETF , отмечается как особо важный для развития «интернета вещей» .

Средства обработки данных

Опыт пользователя и полезность «умных» устройств

Вместе с развитием «Интернета вещей» опыт пользователя распространился и на многочисленные «умные», подключенные к сети устройства. Обеспечение единообразного взаимодействия даже с серией устройств одного производителя является нетривиальной задачей для проектировщиков и дизайнеров, так как, несмотря на разнообразие физических интерфейсов, пользователь должен ощущать единство заложенного в услуге замысла .

В частности, Чарльз Денис (Charles Denis ) и Лоран Карзенти (Laurent Karsenty ) ещё в 2004 году ввели термин interusability для обозначения совместного юзабилити нескольких устройств . В модели, предложенной M. Wäljas и другими, единообразие взаимодействия обеспечивается следующими факторами :

  • Структура (composition ) - распределение функциональности по устройствам;
  • Последовательность (consistency ) в пользовательских интерфейсах задействованных устройств;
  • Преемственность (continuity ) содержимого и данных при переходе между аппаратными платформами.

Прогнозы

Рынок «Интернета вещей» в настоящее время переживает период бурного роста.

По оценкам компании Ericsson, уже в 2018 году число датчиков и устройств Internet of Things (IoT) превысит количество мобильных телефонов и станет самой большой категорией подключенных устройств. Совокупный среднегодовой темп роста (CAGR) данного сегмента в период с 2015 по 2021 год будет составлять 23 %. Аналитики компании прогнозирует, что из приблизительно 28 млрд подключенных устройств по всему миру, к 2021 году, около 16 миллиардов будут связаны с IoT. Российский рынок «Интернета Вещей» также активно развивается.

По оценкам «Директ ИНФО», общий размер российского рынка IoT составил в 2016 году 17,9 млн устройств и вырос по сравнению с 2015 годом на 42 %. К 2021 году общее число IoT устройств вырастет до 79,5 млн, а к 2026 году - 164,7 млн. Общий потенциал российского рынка оценивается на уровне 0,5 млрд устройств .

Примечания

  1. Internet Of Things (англ.) . Gartner IT glossary . Gartner (5 May 2012). - «The Internet of Things is the network of physical objects that contain embedded technology to communicate and sense or interact with their internal states or the external environment.». Проверено 30 ноября 2012. Архивировано 24 января 2013 года.
  2. Hung LeHong, Jackie Fenn. Key Trends to Watch in Gartner 2012 Emerging Technologies Hype Cycle (англ.) . [] (18 September 2012). Проверено 30 ноября 2012. Архивировано 24 января 2013 года.
  3. , «…распространение беспроводных сетей, активный переход на IPv6 и плюс к этому рост популярности облаков и появление группы технологий межмашинного взаимодействия (Machine to Machine, M2M) постепенно перемещают Интернет вещей в практическую плоскость».
  4. , «Этот термин предложил в 1999 году Кевин Эштон, один из первых энтузиастов, увлекшихся RFID, а сейчас возглавляющий исследовательский центр Auto-ID Center в Массачусетском технологическом институте».
  5. , «Linking the new idea of RFID in P&G’s supply chain to the then-red-hot topic of the Internet was more than just a good way to get executive attention».
  6. Neil Gershenfeld, Raffi Krikorian, Danny Cohen. The Internet of Things (англ.) . Scientific American , Oct, 2004 (1 October 2004). Проверено 30 ноября 2012. Архивировано 24 января 2013 года.
  7. , «Individuals, businesses, and governments are unprepared for a possible future when Internet nodes reside in such everyday things as food packages, furniture, paper documents, and more… But to the extent that everyday objects become information-security risks, the IoT could distribute those risks far more widely than the Internet has to date».
  8. Dave Evans. The Internet of Things. How the Next Evolution of the Internet Is Changing Everything (англ.) . Cisco White Paper . Cisco Systems (11 April 2011). Проверено 30 ноября 2012. Архивировано 24 января 2013 года.
  9. The 2nd Annual Internet of Things 2010 (англ.) . Forum Europe (1 January 2010). Проверено 30 ноября 2012. Архивировано 24 января 2013 года.
  10. The 3rd Annual Internet of Things 2011 (англ.) . Forum Europe (1 January 2011). Проверено 30 ноября 2012. Архивировано 24 января 2013 года.
  11. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli.

П осредством интернета стало возможным управлять многими вещами. Объединенные сети из компьютеров, планшетов и смартфонов уже никого не удивляют, промышленное оборудование, управляющееся из единого центра также давно не новинка.

А в скором будущем планируется объединить в единую концепцию бытовые приборы умного дома, которые будут угадывать желания владельцев и выполнять возложенные на них функции при помощи запрограммированного девайса.

Содержание статьи :

Перечисленные возможности - это мир интернет вещей , который проникает во все новые области жизни человека. Уже сейчас количество подключенных приборов перевалило за 20 млрд, а к 2020 году их число превысит отметку в 50 млрд.

Давайте рассмотрим, что такое Интернет вещей, какие примеры его использования уже существуют сегодня и что ждать в ближайшем будущем.

Что такое Интернет вещей

Прежде чем вы окунетесь во все тонкости интернета вещей, посмотрите интересное видео о том, что это такое:

Интернет вещей — это взаимодействие устройств между собой и окружающим миром, которое исключает участие человека, благодаря чему способно изменить некоторые экономические и социальные нормы.

В настоящее время пределом фантазии о развитии технологий можно считать – концептуально иной подход во взаимодействии человека с «умной» электроникой.

Если век тому назад о таком можно было только мечтать, то сегодня это – лишь очередная ступень разработок, относящаяся к не столь отдаленному будущему.

Если углубиться немного в историю, то первым человеком, упоминавшим об Интернете вещей, стал великий Тесла . Он предсказывал радиоволнам роль нейронов, которые будут управлять всеми предметами. Это было просто предсказание, которое в силу многих причин не могло получить практическое применение в то время.

Но уже менее чем через сто лет Кевин Эштен впервые применил Internet of Things (IoT) в логистике - на каждый товар была закреплена радиометка, при помощи которой отслеживалось перемещение товара по торговой цепочке, начиная от склада и заканчивая покупкой.

Вся информация о движении продукции передавалась в сеть, и когда требовалось пополнение запасов, товар не лежал на складе, а отправлялся в магазин.

Интернет вещей — это не просто автоматизация, с которой мы сталкиваемся в повседневной жизни, а нечто большее. Чтобы почувствовать отличия автоматизации процесса и концепции Internet of Things, рассмотрим пример с приготовлением кофе.

Для того чтобы попить кофе в определенный момент, вы засыпаете зерна в аппарат и устанавливаете время, когда кофемашина должна включиться. В строго обозначенный час аппарат начнет свою работу.

В то же время у вас могли измениться предпочтения, и вместо кофе вам вдруг захотелось чай или молочный коктейль. При автоматизации процесса, несмотря ни на что вы все равно получите именно кофе.

То есть, в данном случае командным центром является человек и если он не перепрограммирует кофемашину на другое время или не выключит ее, то уже ненужный кофе все-таки будет сварено.

Используя концепцию интернет вещей, вы просто меняете команду через умный гаджет, который дает сигнал на отключение кофемашины и включение чайника. Таким образом, вы получаете тот напиток, который подходит вам на данный момент.

Internet of Things дает возможность не задавать программу для достижения цели, а позволяет человеку только сформировать цель, которая будет выполнена в результате взаимодействия основного девайса, выполняющего роль единого центра, и бытового прибора, который произведет работу.

Как работает интернет вещей

Есть много сфер, где может работать интернет вещей, но прежде чем погрузиться в них, посмотрите видео о том, как он работает и какие здесь есть проблемы:

Разберемся, как функционирует интернет вещей. Чтобы это происходило, необходимо выполнение трех условий - создание единого центра, использование единого стандарта и обеспечение безопасности передачи данных.

Создание единого центра IoT исключает использование человека в передаче программ для достижения цели. Его место должно занять умное устройство, которое и будет распределять команды внутри сети между приборами.

Обмен данными должен производиться на едином языке, с которым у создателей концепции Internet of Things пока существуют серьезные проблемы.

Каждая компания, будь то Apple, Google или Microsoft, разрабатывает алгоритм отдельно, поэтому в ближайшем будущем мы можем рассчитывать только на изобретение какой-то локальной сети, которую сложно будет объединить даже в пределах одного городского района.

В будущем, наиболее удачная сеть, возможно, будет принята за стандарт и станет глобальной сетью.

Естественно, что передача данных должна происходить в полностью безопасном режиме и защищать сеть от взлома хакерами. В противном случае взломщик получит полные данные о владельце, которые сможет использовать в преступных целях.

Реальные примеры использования IoT

Если вы думаете, что концепция Интернет вещей - дело далекого будущего, то глубоко ошибаетесь. Уже сейчас мы можем представить несколько примеров, которые изменят ваше мнение. В отличие интернета для людей, IoT используется для получения практической выгоды.

Интернет вещей выполняет ряд полезных задач - максимально автоматизирует процессы, снижает временные и уменьшает материальные затраты, оптимизирует производство.

Первым реальным шагом к достижению цели стало подключение тостера к компьютеру, произошедшее в 1990 году посредством доработки его конструкции специальным чипом.

Джон Ромки , осуществивший эту процедуру, смог добиться работы тостера посредством управления им с помощью компьютера. Возможно, это имя более известно благодаря созданному позже протоколу сетевого соединения компьютер-компьютер TCP/IP, но и в истории развития технологий IoT этот человек оставил свой немаловажный вклад.

Отдельными примерами приближения очередного технологического прорыва на бытовом уровне является появление большого количества «умных» приборов, выполняющих свою функцию без участия человека. К ним можно отнести:

  • Высокотехнологичные мусорные баки, оборудованные солнечными батареями, функцией мусорного пресса и системой подачи сигнала работникам коммунальных служб при необходимости освобождения пространства;
  • Геолокационные и биометрические чипы, используемые для контроля популяций животных, а также – для контроля преступников, заключенных под домашний арест;
  • Сенсоры и водные счетчики, используемые для снижения расходов воды и нагрузок на водоканалы крупных городов (используется, в частности, в Сан-Паулу и Пекине);
  • Интерактивные миски для собак, открывающие доступ к корму только при выполнении определенных условий или заданий.

Перечень «умных» приборов растет день ото дня, их разработкой занимаются десятки компаний по всему миру. Преимущественно рассматриваемые приборы предназначаются для обустройства бытовых нужд, но у Интернета вещей все еще впереди.

Использование Internet of Things позволило :

  • Снизить аварийность и сырьевые потери на транспорте и в производстве.
  • Эффективно распределять электричество в сфере энергетики.
  • Заменить человека при управлении оборудованием в промышленности.
  • Контролировать безопасность на улице.

Яндекс. Навигатор

Известная в России и в странах ближнего зарубежья система, есть не что иное, как использование IoT в управлении транспортом. Принцип действия следующий - гаджеты (планшеты, смартфоны) передают в компанию Яндекс направление движения автомобиля, координаты и скорость перемещения.

Вся информация анализируется на сервере и в обработанном виде передается на смартфон водителю, показывая заторы и пути их объезда.

То есть, обмен данными между сервером, приложениями и смартфонами происходит без участия человека и представляет собой пример использования интернет вещей.

Уже сейчас водители сокращают время в дорогах, объезжая пробки по оптимальному маршруту, а в дальнейшем сервис позволит разгружать магистрали и максимально минимизировать пробки.

Internet of Things в спорте

В спорте IoT используется для анализа физических кондиций спортсменов. На участника соревнований устанавливаются датчики, которые анализируют пульс, данные о перемещениях.

Медицинская телеметрия, другие значения отправляются на облако, откуда тренерская бригада команды получает всю информацию о состоянии спортсменов, не дожидаясь перерыва в состязаниях, и уже по полученным данным вносит изменения в игру.

Вся необходимая информация также поступает в онлайн режиме медицинским работникам, которые своевременно могут оказать помощь травмированному или потерявшему кондиции участнику матча.

IoT в системе ЖКХ

Установка умных счетчиков на воду, газ и электроэнергию позволяет передавать данные по расходу ресурсов с каждого домовладения на облачные технологии.

Диспетчер в режиме онлайн видит информацию по отдельно взятой квартире, микрорайону или в масштабе города, что позволяет без использования труда обходчиков получать данные по счетчикам, на основании которых выставлять счета.

Из цепочки потребитель-поставщик услуг выпадают посредники, обслуживающие дома, что дает возможность выигрывать в материальном и временном плане.

Механизм учета ресурсов с использованием IoT технологий позволяет максимально автоматизировать диспетчерские функции и улучшить качество обслуживания.

Сельское хозяйство

Во многих странах Интернет вещей используется при выращивании сельскохозяйственной продукции. Для этого применяются датчики, которые закрепляются за определенным участком или конкретным растением.

Устройство регистрирует данные по состоянию грунта (влажность, температура, другие параметры), которые отправляются на облачную платформу.

С нее данные поступают на сервер, после чего выдаются на монитор, транслируя информацию по состоянию саженца, делаются выводы по улучшению его плодоносных свойств.

К примеру, в Израиле половина всех производителей томатов и более 30% фермерских хозяйств по выращиванию хлопка уже используют IoT технологии при мониторинге почв. Активное внедрение происходит и в других развитых странах.

Промышленность

Одно из швейцарских предприятий, занимающееся производством оборудования, разработало промышленный интернет вещей — IoT платформу по проведению технического обслуживания своей техники на различных производственных площадках.

Концепция Internet of Things объединила более 5 тыс. единиц оборудования. Теперь, если в технике наблюдается износ какого-либо узла, в главный центр поступает сигнал о необходимости профилактики и ремонтники выезжают на место.

Введение технологии IoT позволило прибывать на участок обслуживания только по мере необходимости.

Раньше плановые обходы часто проводились вхолостую, а финансовые затраты за обслуживание бригадами обходчиков были существенными.

Кроме того, во время проведения планово-предупредительного ремонта приходилось останавливать, часто без надобности, целые производственные линии, что несло дополнительные убытки.

Вообще, промышленность более других ждет повсеместное внедрение интернет вещей, так как это поможет максимально минимизировать в производственном процессе человеческий фактор и снизить дополнительные риски.

Медицина и безопасность

Интернет вещей в медицине позволяет круглосуточно контролировать состояние пациента. Для этого на него устанавливают один или несколько датчиков, данные с которых поступают в медицинский центр.

В режиме онлайн отслеживается работа больных органов и общая физическая форма больного. Информация передается лечащим врачам и в лаборатории, где проводится ее мониторинг и в случае необходимости выполняется корректировка лечебного процесса, принимаются дополнительные решения.

Кроме того, специальные радиочипы, установленные на лекарства, в реальном времени позволяют отслеживать количество лекарственных препаратов в медучреждении и своевременно пополнять их запасы.

Внедряются технологии Internet of Things и в обеспечение безопасности объектов. На одной из военных баз РФ на часовых надели специальные электронные браслеты, которые контролируют их состояние и своевременно отсылают данные о проблемах в центр управления.

Если военный в течение полуминуты не двигается, то датчик отправляет сигнал на центральный компьютер, который возвращает его солдату в виде звукового сигнала после чего, если в течение 15 сек. человек так и не совершил движения, объявляется тревога и на проблемное место отправляется караул.

Internet of Things: реальность и ожидания

Ожидаемым эффектом появления системы Internet of Things является унификация всех «умных» приборов под единые стандарты. В реальности все выглядит несколько сложнее – каждый разработчик пытается найти собственное решение, ввиду чего объединить приборы разных производителей в единую сеть будет трудновыполнимой задачей.

С помощью постепенного внедрения Интернета вещей в теории можно было бы создать целые автономные предприятия, не зависящие от человека и не требующие постоянного присутствия работников.

Эта система могла бы объединить собой целые города и страны, а возможно – и всю планету (по крайней мере, обжитую часть суши ).

Но в настоящее время прогресс направлен на нужды потребителя, готового заплатить за покупку новых технологичных помощников немалые деньги – и у некоторых ученых возникают вполне резонные опасения, что мощный проект, в теории способный объединить и облагодетельствовать все человечество, будет похоронен коммерцией и жаждой прибыли еще до получения достойного развития.

Интернет вещей в своем идеальном формате должен превратить каждый подключенный прибор если не в личность, то в индивидуума, способного накапливать «опыт» и самостоятельно принимать решения, основываясь как на своей базовой функциональности, так и в соответствии с другими факторами.

В современных реалиях это кажется весьма трудновыполнимым, поскольку для хранения общей для всех приборов базы данных потребуется по-настоящему мощный сверхкомпьютер с титаническим объемом памяти.

Проблемы реализации системы IoT

Отличие ожидаемого результата от действительности объясняется наличием многочисленных проблем в реализации Интернета вещей. В чем они выражаются?

Необходимость поиска альтернативных методов программирования – это один из основных сложных моментов, и об него программисты всего мира спотыкаются до сих пор.

Современная «умная» техника действует с помощью запрограммированных алгоритмов, зиждущихся на базовых логических командах и блоках. Весь «ум» прибора кроется в коде программы, которая имеет один огромный минус, заключающийся в отсутствии возможности развития.

Поэтому прибор просто выполняет заданный алгоритм и имеет некоторое количество сценариев действия при получении различных ответов в процессе исполнения.

При возникновении конфликта между алгоритмом действия и возникшими обстоятельствами, не предусмотренными программой, программа или даст сбой, или предоставит не тот результат, которой от нее ждали. И, что самое важное – не научится на этом опыте: потребуется программист, который придумает, как заставить программу выйти из подобной ситуации.

Раздробленность разработок – вторая по значимости проблема. Собравшись в единый кулак, корпорации-гиганты Apple, Windows, Google и многие другие смогли бы достичь куда более конкретных результатов. Они не тянут друг друга в разные стороны и даже создают друг другу конкуренцию, но в итоге вынуждены по нескольку раз разрабатывать уже достигнутый кем-то другим результат.

Третьей проблемой является вопрос энергоснабжения. Для корректной работы Интернета вещей даже в рамках отдельно взятого жилого помещения питание всех подключенных приборов должно быть бесперебойным.

Подключение всех приборов в единую сеть Internet of Things вызовет резкий дефицит энергетических ресурсов, который требуется восполнить заранее – либо обнаружить альтернативные, более дешевые и надежные источники энергии.

Кроме того, далеко не все смогут позволить себе оборудовать свой быт вещами из мира высоких технологий.

Переход же к этапам «умного города», «умной страны» и «умной планеты» от «умного дома» без этого будет положительно невозможен. Вывод напрашивается сам собой: интеграция Интернета вещей не должна зависеть от доходов обывателей, но найти того, кто возьмется оплачивать такую инициативу, будет крайне затруднительно.

Слабые места и уязвимости интернета вещей

Увы, идея Интернета вещей имеет свои слабые места и уязвимости. Некоторые из них могут показаться смешными, другие же – вполне серьезны. Над их решением уже пытаются работать, но современный уровень технологий не позволяет решить все и сразу.

  • Зависимость элементов системы друг от друга . Сбой или поломка одного элемента вызовет цепную реакцию, из-за чего Интернет вещей будет решать поставленные задачи нетривиальными способами, провоцировать сбой других устройств или попросту отключаться. К примеру, на «умном» термометре даст сбой температурный датчик – и «умный» гардероб, основываясь на его показаниях, посоветует хозяину одежду не по погоде.
  • Страх перед хакерскими атаками . Разумеется, страшных компьютерных гениев, которых любят показывать в кино, в природе не существует – однако способы взломать любой запрограммированный прибор имеются (хоть они и не так зрелищны). Получив доступ к информации одного «умного» прибора в «умном» доме, взломщик сможет буквально держать руку на пульсе его владельца, зная о нем практически все.
  • Возможное восстание машин . Если дать машинам искусственный интеллект и машинное обучение вместе с центральным компьютером, выполняющим функции энциклопедического мозга, они со временем могут «понять», что достойны большего, чем услужение людям. Скорее всего, это завершится грандиозным сбоем во всей системе, но исключать варианты с агрессивным поведением «умных» приборов тоже не стоит.
  • Тотальная зависимость системы от энергетических ресурсов . Даже если человечество перейдет на фактически неисчерпаемые ресурсы в виде альтернативных источников бесплатной энергии (солнечный свет, геотермальные ТЭС и т.д.), для полного вывода системы из строя на определенном участке потребуется просто вывести из строя источник энергии. По этой причине данная разработка вряд ли будет применяться в военных целях, оставив войну людям: управляемое электромагнитное поле, доступное уже сейчас, сжигает любую электронику, какой бы «умной» она ни была.
  • Возможная деградация человечества вследствие критического упрощения жизни . Пример можно наблюдать в мультфильме «Валли», где находящиеся на попечении роботов люди не имеют сил даже на то, чтобы выбраться из кресел.

Некоторые из этих уязвимостей можно считать фантастическими и невозможными, однако не стоит забывать, что до недавнего прошлого и сам был невозможен. С уровнем роста технологий изменяются и границы возможностей – и об этом не стоит забывать.

Необходимое послесловие

Что принесет миру Internet of Things?

Возможно, полное подключение к нему избавит человечество от лишних амбиций и откроет ему путь в золотой век, эпоху торжества науки. Возможно, в результате нас ждет всеобъемлющий пост-апокалипсис в духе братьев Вачовски по трилогии «Матрица».

Сейчас многие говорят про интернет вещей, но не все понимают, что это такое.

Если верить «Википедии», это концепция вычислительной сети физических объектов («вещей»), оснащённых встроенными технологиями для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и операций необходимость участия человека.

Говоря простым языком, интернет вещей - это некая сеть, в которую объединены вещи. Причём под вещами я подразумеваю всё что угодно: автомобиль, утюг, мебель, тапочки. Всё это сможет «общаться» друг с другом без участия человека при помощи передаваемых данных.

Появление подобной системы было ожидаемо, ведь лень - двигатель прогресса. Не придётся утром идти к кофеварке, чтобы сделать кофе. Она уже знает, когда вы обычно просыпаетесь, и к этому времени сама сварит ароматный кофе. Классно? Пожалуй, но насколько это реально и когда появится?

Как это работает

picjumbo.com

Мы находимся в начале пути, и об интернете вещей пока говорить рано. Возьмём для примера кофеварку, о которой я писал выше. Сейчас человеку приходится самостоятельно вводить время своего пробуждения, чтобы она сварила ему утром кофе. Но что произойдёт, если в это время человека не будет дома или он захочет чай? Да всё то же самое, так как он не поменял программу и бездушная железка снова сварила свой кофе. Такой сценарий интересен, но это скорее автоматизация процесса, чем интернет вещей.

У руля всегда стоит человек, он центр. Умных гаджетов с каждым годом становится всё больше, но они не работают без команды человека. Эту несчастную кофеварку придётся постоянно контролировать, менять программу, что неудобно.

Как это должно работать


picjumbo.com

Интернет вещей подразумевает, что человек определяет цель, а не задаёт программу по достижению этой цели. Ещё лучше, если система сама анализирует данные и предугадывает желания человека.

Едете вы с работы домой, уставший и голодный. В это время автомобиль уже сообщил дому, что через полчаса привезёт вас: мол, готовьтесь. Включается свет, термостат настраивает комфортную температуру, в духовке готовится ужин. Зашли в дом - включился телевизор с записью игры любимой команды, ужин готов, добро пожаловать домой.

Вот в чём главные особенности интернета вещей:

  • Это постоянное сопровождение повседневных действий человека.
  • Всё происходит прозрачно, ненавязчиво, с ориентацией на результат.
  • Человек указывает, что должно получиться, а не как это сделать.

Скажете, фантастика? Нет, это ближайшее будущее, но, чтобы добиться таких результатов, необходимо ещё многое сделать.

Как этого добиться


picjumbo.com

1. Единый центр

Логично, что в центре всех этих вещей должен стоять не человек, а какой-то девайс, который и будет передавать программу по достижению цели. Он будет контролировать другие устройства и выполнение задач, а также собирать данные. Такой девайс должен стоять в каждом доме, офисе и других местах. Их объединит единая сеть, через которую они будут обмениваться данными и помогать человеку в любом месте.

Зачатки такого центра мы уже видим сейчас. Amazon Echo, Google Home, да и Apple вроде тоже работает над чем-то подобным. Такие системы уже сейчас могут выполнять роль центра умного дома, хотя их возможности пока ограничены.

2. Единые стандарты

Это станет, пожалуй, главным препятствием на пути к глобальному интернету вещей. Для масштабной работы системы необходим единый язык. Над своей экосистемой сейчас работают Apple, Google, Microsoft. Но все они двигаются по отдельности, в разные стороны, а значит, в лучшем случае мы получим локальные системы, которые сложно объединить даже на уровне города.

Возможно, какая-то из систем станет стандартом, либо каждая сеть так и останется локальной и не перерастёт в нечто глобальное.

3. Безопасность

Естественно, разрабатывая такую систему, необходимо позаботиться о защите данных. Если сеть взломает хакер, он будет знать о вас абсолютно всё . Умные вещи сдадут вас злоумышленникам с потрохами, так что над шифрованием данных стоит серьёзно поработать. Конечно, над этим работают уже сейчас, но периодически всплывающие скандалы говорят о том, что до идеальной безопасности ещё далеко.

Что нас ждёт в ближайшем будущем


Mitch Nielsen/unsplash.com

В ближайшем будущем нас ждут умные дома, которые будут сами открывать двери для владельцев при приближении, поддерживать комфортный микроклимат, самостоятельно пополнять холодильник и заказывать необходимые лекарства, если человек заболел. Причём перед этим дом получит показатели с умного браслета и отправит их врачу. По дорогам будут ездить беспилотные автомобили, а на самих дорогах больше не останется пробок. Интернет вещей позволит разработать более продвинутую систему контроля трафика, которая сможет предотвращать появление пробок и заторов на дорогах.

Уже сейчас многие гаджеты работают в связке с различными системами, однако в ближайшие 5–10 лет нас ждёт настоящий бум развития интернета вещей. Вот только в будущем возможен расклад как в мультике «ВАЛЛ-И», где человечество превратилось в беспомощных толстяков, обслуживаемых роботами. Так себе перспектива. А что думаете вы?

«Интернет вещей» является частью концепции, что Интернет стал уже не просто глобальной сетью для людей, позволяющей общаться друг с другом посредством компьютеров, но также Интернет теперь является платформой для устройств, позволяющей им общаться в электронном виде с окружающим миром.
В результате это мир, который живет в виде информации и потоков данных от одного устройства к другому, является общим и может повторно использовать каналы для различных целей.
Использование потенциала «Интернета вещей» для экономического и социального блага в ближайшие десятилетия будет одной из основных задач, включая проблемы и возможности, вытекающие из этого явления.

Комбинирование технологий, в том числе дешевых датчиков, маломощных процессоров, постоянного масштабирования облачных сервисов, а также повсеместное внедрение беспроводного подключения позволили начать эту революцию.

Все чаще компании используют эти технологии для внедрения аналитики деятельности и поиска новых возможностей своих продуктов, что позволяет предметам быта становиться умнее, учиться на своем опыте и качественнее взаимодействовать с окружающей их средой.

Некоторые из этих устройств осуществляют коммуникации вида машина-машина. Например, датчики на проезжей части оповещают автомобили о потенциальных опасностях, смарт-сетки посылают динамические данные о ценах на электроэнергию бытовой технике с целью оптимизации энергопотребления.

Другие устройства используют коммуникацию вида машина-человек, что осуществляется непосредственно через сам продукт или косвенно через веб-браузер на ПК или мобильном устройстве. Например, системы управленческого саппорта (содействие принятию правильных управленческих решений) на фермах могут объединить данные о почвенных условиях из экологических датчиков с историческими данными и прогнозами о ценах и погодных условиях, что позволяет выработать рекомендаций для фермеров о том, как сажать и удобрять конкретные земельные участки.
Эти трансформации несмотря на свою значимость будут во многом незаметными для обывателя, потому что изменения в физической среде будут невидимым или очень неприметными. «Умный» дом или «умный» мост выглядят так же как и обычный – весь интеллект встроен в инфраструктуру. Потребительские товары, со встроенным интеллектом (например, сушилки для одежды или термостаты) внешне не будут значительно отличаться от тех, что есть сегодня.

Тем не менее, несмотря на отсутствие серьезных внешних изменений, влияние «Интернета вещей» будет весьма глубоким и создаст новые возможности для решения многих насущных социальных проблем сегодняшнего дня.

Возможности IoT представляются новыми продуктами и услугами, которые помогут защитить окружающую среду, сохранить энергию, повысить производительность сельского хозяйства, сделать перевозки быстрее и безопаснее, повысить уровень общественной безопасности, а также сделать медицинское обслуживание лучше и доступнее. Кроме того, некоторые предметы путем предоставления своевременной информации смогут просто помогать своим занятым владельцам в быту: например, «умный» холодильник может напомнить своему владельцу, что пора купить молоко, когда оно почти закончилось.
Большие изменения состоят из множества мелких и влекут за собой новые, также и «Интернет вещей» может принести миллионы дополнительных изменений в ближайшие годы. Эта статья демонстрирует разнообразие устройств, входящих в состав «Интернета вещей» уже сегодня. В потенциале эти устройства могут быть применимы для решения различных практических задач, больших и маленьких, а также в открытых новыми технологиями стратегических принципах, которые помогут правительственным лидерам максимизировать выгоду.

Окружающая среда

С постоянно растущей численностью людей на планете (сейчас уже более 7 миллиардов) рациональное использование природных ресурсов Земли становится все более сложной задачей, но это тот вопрос, который должен быть решен для достижения устойчивого экономического развития в первую очередь.

Защита окружающей среды требует многогранного решения, но «Интернет вещей» уже сейчас предлагает уникальные возможности для решения таких вопросов, загрязнение воды и воздуха, свалки отходов и вырубка лесов.

Сенсорные устройства, соединенные в общую сеть, теперь внимательно следят за воздействием на окружающую среду наших городов, собирая сведения о канализации, качестве воздуха и мусорных отходах. За пределами города такие же сети сенсорных устройств ведут постоянный мониторинг наших лесов, рек, озер и океанов.

Многие экологические тенденции настолько сложны, что их трудно осмыслить, но сбор данных является первым шагом на пути к пониманию и в конечном итоге к выработке решений по снижению отрицательного воздействия деятельности человека на окружающую среду.

Атмосфера

Air Quality Egg («яйцо проверки качества воздуха») представляет собой устройство, которое использует датчики для сбора и обмена данными о качестве воздуха за пределами дома или офиса человека. В то время как государственные учреждения, такие как Агентство по охране окружающей среды США, мониторят качество воздуха и уровень загрязненности в центрах мегаполисов, «яйцо» собирает данные о непосредственного окружения своего пользователя в режиме реального времени. Базовая станция передает данные о качестве воздуха через Интернет, где на специальном веб-сайте собирается и отражается информация, собранная всеми «яйцами», которые используются. В режиме реального времени данные могут быть использованы для оценки влияния городской политики и изменения уровня загрязнения, а также для разработки и принятия новых программ и решений в этой сфере. Также данный сервис позволяет жителям города больше узнать о своем месте жительства и своем личном и непосредственном влиянии на свой дом. Устройство «Air Quality Egg» можно найти по всей Северной Америке, в Западной Европе и Восточной Азии и в будущем может сыграть свою роль в развивающихся странах с наиболее быстрым ростом городского населения и высокими темпами загрязнения.

Мусорные контейнеры (урны)

Устройство BigBelly является работающей на солнечных батареях урной, которая уплотняет мусор и предупреждает санитарные экипажи (дворников и уборщиков), когда она полна. Общая сеть анализирует собранные данные, полученные от каждой урны BigBelly, что позволяет планировать деятельность по сбору и оперативно вносить коррективы, такие как частота вывоза мусора и размер самой урны. Системы BigBelly располагаются повсюду: в городах, крупных деловых центрах, в университетских городках, в парках и на пляжах.
Бостонский университет сократил частоту вывоза мусора с 14 до 1,6 раза в неделю. В университете не только сэкономили время, но и энергию, так как теперь используется меньшее количество мешков для мусора и производится меньше углекислого газа во время вывозов мусора.

Учитывая, что объемы бытовых отходов согласно прогнозам возрастут с 1,3 тонны, производимых сейчас, до 2,2 млрд. тонн к 2025 году, то дополнительные инструменты будут крайне необходимы, чтобы справляться с большими объемами мусора.

Леса

Invisible Tracck (невидимый Трак) представляет собой небольшое устройство, которое незаметно размещается на деревьях в охраняемых лесных районах, чтобы помочь в борьбе с незаконной вырубкой лесов. Устройства, которые меньше, чем колода карт, уведомляют власти, когда незаконно заготовленные деревья проходят в зоне действия мобильной связи. Сотрудники правоохранительных органов затем могут найти производственные площадки и остановить эту деятельность в более полном масштабе, нежели просто оштрафовав за незаконную вырубку.

Сети невидимых Траков в настоящее время развернуты в амазонских лесах в Бразилии, которые теряли в среднем по 3 460 000 гектаров девственных лесов каждый год в период с 2000 по 2005 года. Многие незаконные действия по вырубке лесов прошли незамеченными, так как частоты спутникового диапазона и радиочастоты часто слишком слабые в отдаленных районах. Невидимый Трак теперь гарантирует, что даже в наиболее уязвимых и отдаленных районах Бразилии можно охранять и защищать леса.

Водные пути

Интегрированная система морских наблюдений в Австралии представляет собой сеть датчиков вдоль Большого Барьерного рифа, позволяющую собирать данные для исследователей, изучающих влияние океанических условий на морские экосистемы и изменения климата. Буйки, оснащенные датчиками, собирают биологические, физические и химические данные. Данные передаются на базовую станцию на берегу за счет использования различных беспроводных технологий, в том числе микроволн, телевидения и мобильных сетей 3G, в зависимости от расстояния до берега. Система была развернута в 2010 года в семи различных местах вдоль Большого Барьерного рифа и собрала данные для исследования движения рыб, биоразнообразия и повреждений коралловых рифов.

Вспомните фантастические фильмы, где умный дом угадывает желания хозяев, заказывает продукты, следит за бытовой техникой. Это может стать реальностью быстрее, чем вам кажется. Взять хотя бы нашу новую систему умного микроклимата – это один из шагов в сторону технологичного будущего. А в основе всех «умных» технологий лежит понятие «интернет вещей». Что это такое, как появилось и к чему приведет – об этом ниже.

Что такое интернет вещей

На английском «интернет вещей» звучит как the Internet of Things, или просто IoT. Запомните эту аббревиатуру, она будет все чаще появляться в СМИ и на просторах мировой сети.

Говоря простыми словами, интернет вещей – это сеть, объединяющая все объекты вокруг вас. К сети из компьютеров, планшетов, смартфонов и даже телевизоров уже все привыкли. А что если в эту сеть включить тостеры, кофе-машины, холодильники, зубные щетки, водопровод, электросеть, датчики артериального давления? Представьте, насколько изменится мир, если каждой вещью вы сможете управлять по беспроводной сети!

К примеру, вы стоите в душной пробке после тяжелого дня в офисе и мечтаете скорее попасть домой, в приятную прохладу, принять теплую ванну и выпить чашку свежего кофе. Все, что вам нужно, это озвучить смартфону все свои пожелания. А дальше он сам раздаст команды климатической технике, водопроводу и кофе-машине. К вашему приезду бризер сделает воздух свежим, кондиционер – прохладным, ванна наполнится водой комфортной температуры, а на столе будет ждать свежий американо. Неплохо звучит?

Но прежде чем фантазировать о будущем, бросим взгляд в прошлое интернета вещей.

Еще в 1926 году известный физик Никола Тесла предсказал, что радио вырастет в «большой мозг», который объединит вещи в одно большое целое. Причем все это будет возможно благодаря инструментам настолько компактным, что они поместятся в кармане.

Еще один человек, кто высказывал похожие идеи – советский военачальник Николай Васильевич Огарков. Ему принадлежит авторство так называемого сетецентрического подхода к боевым действиям. Суть принципа: все ресурсы для решения конкретной задачи должны быть в одной информационной сети и должны постоянно обмениваться данными. Чем не интернет вещей?

Но это все общие слова. Конкретика началась чуть позже. В 1990 году выпускник MIT Джон Ромки подключил к интернету свой тостер. Это первый официально зарегистрированный объект из мира интернета вещей.

К слову, Джон Ромки – один из отцов протокола TCP/IP, того самого, который лежит в основе интернета как такового. Через 9 лет после интернет-тостера другой выпускник MIT, Кевин Эштон, придумал, как управлять промышленными объектами через интернет. Эштон и стал автором термина «интернет вещей».

В том же 1999 году и в том же MIT появился Центр автоматической идентификации (Auto-ID Center). В нем исследователи развивали два основных направления: радиочастотную идентификацию (RFID) и сенсорные технологии. Об этих технологиях мы расскажем в следующий раз. Сейчас отметим только, что именно благодаря стараниям Центра автоматической идентификации концепция интернета вещей стала известной во всем мире.

Ключевое событие в развитии интернета вещей произошло не так давно, в 2008-2009 годах. Именно тогда и произошел официальный переход от интернета людей к интернету вещей. Как это определили? Очень просто: в 2008-2009 годах в интернете стало больше предметов, чем людей.

И дальше количество устройств, подключенных к интернету, только росло. Причем сумасшедшими темпами. Уже сегодня к интернету подключено 20 миллиардов самых разнообразных устройств: от промышленных станков до смартфонов.

Некоторые примеры реальных интернет-вещей в нашем мире:

  • Радиометки на теле животных
  • Миска для собак с модулем wi-fi, которая дает собаке задания и за правильные ответы награждает кормом
  • Мусорный бак на солнечных батареях, который сам уплотняет мусор и сигналит дворникам, когда наполнится
  • Умные сенсоры и водные счетчики в инфраструктуре Сан-Паулу, Пекина и Дохи сократили утечки и расходы на 50%
  • Автоматические системы сбора штрафов и оповещений об авариях и пробках на дорогах

В том, что появились «умные» вещи, нет ничего удивительного. Ведь известно, что прогресс зачастую двигает лень. Изобретение колеса, рычага, замена рычагов на кнопки, появление пультов дистанционного управления – все это человек придумал, чтобы вместо него работали механизмы и устройства.

И сейчас многие устройства из мира интернета вещей, по сути, выполняют ту же функцию, что и пульт дистанционного управления. Если раньше лампочка загоралась только после того, как человек нажмет на выключатель, то теперь свет включает и выключает запрограммированный компьютер. А человек управляет компьютером со смартфона.

Лампы стали энергоэффективными, включаются они не вручную, а через мобильное приложение. Но сам подход остался прежним: человек все еще управляет лампочкой. Как и большинством других современных интернет-устройств.

В будущем интернет вещей будет все дальше уходить от команд типа
«сделать так» к командам типа «должно быть так».

Перспективы и проблемы интернета вещей

Специалисты обещают, что к 2020 году к интернету будет подключено больше 50 миллиардов различных устройств. Раньше для всех них попросту не нашлось бы столько IP-адресов. Но сейчас новый интернет-протокол IPv6 дает фактически бесконечное количество IP-адресов. Так что с «пропиской» у интернет-устройств проблем не будет.

Другая серьезная проблема интернета вещей – бесперебойное питание приборов, без него они выпадут из сети, и все связи между ними нарушатся. Постоянно менять миллиарды батареек в миллиардах устройств расточительно, для этого нужно слишком много времени, внимания и ресурсов для создания и утилизации батареек.

Вывод : интернет-вещи должны получать энергию сами – от солнечного света, вибраций, воздушных потоков. Недавно в этой области был совершен значительный прорыв. В 2011 году ученые представили гибкий чип, наногенератор для создания энергии из любых движений человека. Так что ждем в будущем появления абсолютно автономных интернет-вещей, которым не нужны батарейки.

Третье препятствие на пути у интернета вещей – это связь приборов с самим интернетом. Далеко не в каждое устройство можно вставить модуль Wi-Fi, хотя бы из-за небольших размеров этого устройства. Но и тут достижения ученых вселяют оптимизм. Они создали микрочип размером всего 1 мм 2 с очень низким энергопотреблением. С ним выйти в сеть сможет прибор любого размера.

Наконец, главная проблема сегодняшнего интернета вещей – отсутствие единого стандарта . Сейчас система одной компании управляет отоплением, другой – светом, третья компания управляет микроклиматом. В конце концов, все эти сети объединятся в одну. Есть даже специальные организации, которые стремятся подогнать под один шаблон разрозненные сети интернет-вещей.


© 2024
zane-host.ru - Программы. Компьютеры. Сетевое оборудование. Оргтехника