31.07.2023

Типы алгоритмов шифрования. Алгоритмы шифрования данных. Симметричные алгоритмы шифрования. Алгоритм шифрования RSA. Алгоритм шифрования DES. Выбор алгоритма шифрования Современные алгоритмы шифрования данных


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Курсовая работа

На тему:

Алгоритмы шифрования данных

Введение

1. Назначение и структура алгоритмов шифрования

1.1 Обзор криптографических методов

2. Алгоритм симметричного шифрования

2.1 Структура алгоритмов шифрования

3. Применение симметричного алгоритма шифрования

Заключение

Список литературы

Введение

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен.

Почему проблема использования криптографических методов в информационных системах стала в настоящий момент особо актуальна?

До сих пор любая известная форма коммерции потенциально подвержена мошенничеству - от обвешивания на рынке до фальшивых счетов и подделки денежных знаков. Схемы электронной коммерции не исключение. Такие формы нападения может предотвратить только стойкая криптография.

Электронные деньги без криптографии не выживут. Интернет постепенно превращается в Информационную Магистраль. Это связано с тем, что количество пользователей Сети постоянно растет, как снежная лавина. Кроме обычного обмена информации в Сеть проникают деловые отношения, которые всегда влекут за собой денежные расчеты. Примеров торговли в Интернете различными товарами и услугами накопилось немало. Это и традиционная торговля, подкрепленная возможностями Сети, когда покупатель может выбрать товар из огромных каталогов и даже рассмотреть этот товар (такой сервис, основанный на передаче трехмерного изображения, становится все более распространенным). Это доступ к туристическим услугам, когда вы можете заранее узнать все о месте вашего путешествия и уровне сервиса, рассмотреть фотографии (природа, рестораны, бассейны, обстановка номера...), забронировать путевку и заказать авиабилеты. Таких примеров довольно много, и многие из них подразумевают денежные расчеты.

Что касается расчетов с помощью кредитной карты, то ее недостатки очевидны: необходимо обзаводится картой (а в России еще далеко не все знают, что это такое), есть и опасения, что всем в Интернете станут известны коды вашей кредитки злые люди очистят ваш счет. На самом деле вероятность такого мошенничества не больше той, что при обмене валюты вам подсунут фальшивые деньги. Да и вообще, к электронных денег проблем не больше, чем у обыкновенных. Для проведения расчетов в Сети разработано несколько платежных систем. Которые либо искусно применяют существующие кредитки, либо опираются на чистые электронные деньги, то есть на защищенную систему файлов, в которых хранятся записи о состоянии вашего счета. Таких систем в мире больше десятка, а в России тоже несколько, самая распространенная из которых - CyberPlat.

1. Расчеты в Сети связаны с передачей особой информации, которую нельзя открывать посторонним лицам.

2. При расчетах необходимо иметь гарантию, что все действующие лица (покупатель, продавец, банк или платежная система) именно те, за кого себя выдают.

Этих двух факторов достаточно, чтобы понять, что без криптографии расчеты в Сети невозможны, а сама идея электронных денег предполагает надежную защиту информации и гарантию того, что никто не сможет подменить участника сделки и таким образом украсть электронные деньги.

Появление новых мощных компьютеров, технологий сетевых и нейтронных вычислений, сделало возможным дискредитацию криптографических систем, еще недавно считавшимися нераскрываемыми.

Все это постоянно подталкивает исследователей на создание новых криптосистем и тщательный анализ уже существующих.

Актуальность и важность проблемы обеспечения информационной безопасности обусловлена следующими факторами:

* Современные уровни и темпы развития средств информационной безопасности значительно отстают от уровней и темпов развития информационных технологий.

* Высокие темпы роста парка персональных компьютеров, применяемых в разнообразных сферах человеческой деятельности.

1. Назначение и структура алгоритмов шифрования

Шифрование является наиболее широко используемым криптографическим методом сохранения конфиденциальности информации, он защищает данные от несанкционированного ознакомления с ними. Для начала рассмотрим основные методы криптографической защиты информации. Словом, криптография - наука о защите информации с использованием математических методов. Существует и наука, противоположная криптографии и посвященная методам вскрытия защищенной информации - криптоанализ . Совокупность криптографии и криптоанализа принято называть криптологией . Криптографические методы могут быть классифицированы различным образом, но наиболее часто они подразделяются в зависимости от количества ключей, используемых в соответствующих криптоалгоритмах (см. рис. 1):

1. Бесключевые, в которых не используются какие-либо ключи.

2. Одноключевые - в них используется некий дополнительный ключевой параметр - обычно это секретный ключ.

3. Двухключевые, использующие в своих вычислениях два ключа: секретный и открытый.

Рис. 1. Криптоалгоритмы

1.1 Обзор криптографических методов

Шифрование является основным методом защиты; рассмотрим его подробно далее.

Стоит сказать несколько слов и об остальных криптографических методах:

1. Электронная подпись используется для подтверждения целостности и авторства данных. Целостность данных означает, что данные не были случайно или преднамеренно изменены при их хранении или передаче.

Алгоритмы электронной подписи используют два вида ключей:

o секретный ключ используется для вычисления электронной подписи;

o открытый ключ используется для ее проверки.

При использовании криптографически сильного алгоритма электронной подписи и при грамотном хранении и использовании секретного ключа (то есть при невозможности использования ключа никем, кроме его владельца) никто другой не в состоянии вычислить верную электронную подпись какого-либо электронного документа.

2. Аутентификация позволяет проверить, что пользователь (или удаленный компьютер) действительно является тем, за кого он себя выдает. Простейшей схемой аутентификации является парольная - в качестве секретного элемента в ней используется пароль, который предъявляется пользователем при его проверке. Такая схема доказано является слабой, если для ее усиления не применяются специальные административно-технические меры. А на основе шифрования или хэширования (см. ниже) можно построить действительно сильные схемы аутентификации пользователей.

3. Существуют различные методы криптографического контрольного суммирования:

o ключевое и бесключевое хэширование;

o вычисление имитоприставок;

o использование кодов аутентификации сообщений.

Фактически, все эти методы различным образом из данных произвольного размера с использованием секретного ключа или без него вычисляют некую контрольную сумму фиксированного размера, однозначно соответствующую исходным данным.

Такое криптографическое контрольное суммирование широко используется в различных методах защиты информации, например:

o для подтверждения целостности любых данных в тех случаях, когда использование электронной подписи невозможно (например, из-за большой ресурсоемкости) или является избыточным;

o в самих схемах электронной подписи - "подписывается" обычно хэш данных, а не все данные целиком;

o в различных схемах аутентификации пользователей.

4. Генераторы случайных и псевдослучайных чисел позволяют создавать последовательности случайных чисел, которые широко используются в криптографии, в частности:

o случайные числа необходимы для генерации секретных ключей, которые, в идеале, должны быть абсолютно случайными;

o случайные числа применяются во многих алгоритмах электронной подписи;

o случайные числа используются во многих схемах аутентификации.

Не всегда возможно получение абсолютно случайных чисел - для этого необходимо наличие качественных аппаратных генераторов. Однако, на основе алгоритмов симметричного шифрования можно построить качественные генераторы псевдослучайных чисел.

2 Алгоритм симметричного шифрования

Шифрование информации - это преобразование открытой информации в зашифрованную (которая чаще всего называется шифртекстом или криптограммой ), и наоборот. Первая часть этого процесса называется зашифрованием , вторая - расшифрованием .

Можно представить зашифрование в виде следующей формулы:

С = E k1 (M), где:

M (message) - открытая информация,

С (cipher text) - полученный в результате зашифрования шифртекст,

E (encryption) - функция зашифрования, выполняющая криптографические преобразования над M ,

k1 (key) - параметр функции E , называемый ключом зашифрования.

В стандарте ГОСТ 28147-89 (стандарт определяет отечественный алгоритм симметричного шифрования) понятие ключ определено следующим образом: "Конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований".

Ключ может принадлежать определенному пользователю или группе пользователей и являться для них уникальным. Зашифрованная с использованием конкретного ключа информация может быть расшифрована только с использованием только этого же ключа или ключа, связанного с ним определенным соотношением.

Аналогичным образом можно представить и расшифрование:

M" = D k2 (C), где:

M" - сообщение, полученное в результате расшифрования,

D (decryption) - функция расшифрования; так же, как и функция зашифрования, выполняет криптографические преобразования над шифртекстом,

k2 - ключ расшифрования.

Для получения в результате расшифрования корректного открытого текста (то есть того самого, который был ранее зашифрован: M" = M), необходимо одновременное выполнение следующих условий:

1. Функция расшифрования должна соответствовать функции зашифрования.

2. Ключ расшифрования должен соответствовать ключу зашифрования.

При отсутствии верного ключа k2 получить исходное сообщение M" = M с помощью правильной функции D невозможно. Под словом "невозможно" в данном случае обычно понимается невозможность вычисления за реальное время при существующих вычислительных ресурсах.

Алгоритмы шифрования можно разделить на две категории (см. рис. 1):

1. Алгоритмы симметричного шифрования.

2. Алгоритмы асимметричного шифрования.

В алгоритмах симметричного шифрования для расшифрования обычно используется тот же самый ключ, что и для зашифрования, или ключ, связанный с ним каким-либо простым соотношением. Последнее встречается существенно реже, особенно в современных алгоритмах шифрования. Такой ключ (общий для зашифрования и расшифрования) обычно называется просто ключом шифрования .

В асимметричном шифровании ключ зашифрования k1 легко вычисляется из ключа k2 таким образом, что обратное вычисление невозможно. Например, соотношение ключей может быть таким:

k1 = a k2 mod p,

где a и p - параметры алгоритма шифрования, имеющие достаточно большую размерность.

Такое соотношение ключей используется и в алгоритмах электронной подписи.

Основной характеристикой алгоритма шифрования является криптостойкость , которая определяет его стойкость к раскрытию методами криптоанализа. Обычно эта характеристика определяется интервалом времени, необходимым для раскрытия шифра.

Симметричное шифрование менее удобно из-за того, что при передаче зашифрованной информации кому-либо необходимо, чтобы адресат заранее получил ключ для расшифрования информации. У асимметричного шифрования такой проблемы нет (поскольку открытый ключ можно свободно передавать по сети), однако, есть свои проблемы, в частности, проблема подмены открытого ключа и медленная скорость шифрования. Наиболее часто асимметричное шифрование используется в паре с симметричным - для передачи ключа симметричного шифрования, на котором шифруется основной объем данных. Впрочем, схемы хранения и передачи ключей - это тема отдельной статьи. Здесь же позволю себе утверждать, что симметричное шифрование используется гораздо чаще асимметричного, поэтому остальная часть статьи будет посвящена только симметричному шифрованию.

Симметричное шифрование бывает двух видов:

· Блочное шифрование - информация разбивается на блоки фиксированной длины (например, 64 или 128 бит), после чего эти блоки поочередно шифруются. Причем, в различных алгоритмах шифрования или даже в разных режимах работы одного и того же алгоритма блоки могут шифроваться независимо друг от друга или "со сцеплением" - когда результат зашифрования текущего блока данных зависит от значения предыдущего блока или от результата зашифрования предыдущего блока.

· Поточное шифрование - необходимо, прежде всего, в тех случаях, когда информацию невозможно разбить на блоки - скажем, некий поток данных, каждый символ которых должен быть зашифрован и отправлен куда-либо, не дожидаясь остальных данных, достаточных для формирования блока. Поэтому алгоритмы поточного шифрования шифруют данные побитно или посимвольно. Хотя стоит сказать, что некоторые классификации не разделяют блочное и поточное шифрование, считая, что поточное шифрование - это шифрование блоков единичной длины.

Рассмотрим, как выглядят изнутри алгоритмы блочного симметричного шифрования.

2.1 Структура алгоритмов шифрования

Подавляющее большинство современных алгоритмов шифрования работают весьма схожим образом: над шифруемым текстом выполняется некое преобразование с участием ключа шифрования, которое повторяется определенное число раз (раундов). При этом, по виду повторяющегося преобразования алгоритмы шифрования принято делить на несколько категорий. Здесь также существуют различные классификации, приведу одну из них. Итак, по своей структуре алгоритмы шифрования классифицируются следующим образом:

1. Алгоритмы на основе сети Фейстеля.

Сеть Фейстеля подразумевает разбиение обрабатываемого блока данных на несколько субблоков (чаще всего - на два), один из которых обрабатывается некоей функцией f() и накладывается на один или несколько остальных субблоков. На рис. 2 приведена наиболее часто встречающаяся структура алгоритмов на основе сети Фейстеля.

Рис. 2. Структура алгоритмов на основе сети Фейстеля.

Дополнительный аргумент функции f() , обозначенный на рис. 2 как Ki , называется ключом раунда . Ключ раунда является результатом обработки ключа шифрования процедурой расширения ключа, задача которой - получение необходимого количества ключей Ki из исходного ключа шифрования относительно небольшого размера (в настоящее время достаточным для ключа симметричного шифрования считается размер 128 бит). В простейших случаях процедура расширения ключа просто разбивает ключ на несколько фрагментов, которые поочередно используются в раундах шифрования; существенно чаще процедура расширения ключа является достаточно сложной, а ключи Ki зависят от значений большинства бит исходного ключа шифрования.

Наложение обработанного субблока на необработанный чаще всего выполняется с помощью логической операции "исключающее или" - XOR (как показано на рис. 2). Достаточно часто вместо XOR здесь используется сложение по модулю 2 n , где n - размер субблока в битах. После наложения субблоки меняются местами, то есть в следующем раунде алгоритма обрабатывается уже другой субблок данных.

Такая структура алгоритмов шифрования получила свое название по имени Хорста Фейстеля (Horst Feistel) - одного из разработчиков алгоритма шифрования Lucifer и разработанного на его основе алгоритма DES (Data Encryption Standard) - бывшего (но до сих пор широко используемого) стандарта шифрования США. Оба этих алгоритма имеют структуру, аналогичную показанной на рис. 2. Среди других алгоритмов, основанных на сети Фейстеля, можно привести в пример отечественный стандарт шифрования ГОСТ 28147-89, а также другие весьма известные алгоритмы: RC5, Blowfish, TEA, CAST-128 и т.д.

На сети Фейстеля основано большинство современных алгоритмов шифрования - благодаря множеству преимуществ подобной структуры, среди которых стоит отметить следующие:

o Алгоритмы на основе сети Фейстеля могут быть сконструированы таким образом, что для зашифрования и расшифрования могут использоваться один и тот же код алгоритма - разница между этими операциями может состоять лишь в порядке применения ключей Ki; такое свойство алгоритма наиболее полезно при его аппаратной реализации или на платформах с ограниченными ресурсами; в качестве примера такого алгоритма можно привести ГОСТ 28147-89.

o Алгоритмы на основе сети Фейстеля являются наиболее изученными - таким алгоритмам посвящено огромное количество криптоаналитических исследований, что является несомненным преимуществом как при разработке алгоритма, так и при его анализе.

Существует и более сложная структура сети Фейстеля, пример которой приведен на рис. 3.

Рис. 3. Структура сети Фейстеля.

Такая структура называется обобщенной или расширенной сетью Фейстеля и используется существенно реже традиционной сети Фейстеля. Примером такой сети Фейстеля может служить алгоритм RC6.

2. Алгоритмы на основе подстановочно-перестановочных сетей (SP-сеть - Substitution-permutation network).

В отличие от сети Фейстеля, SP-сети обрабатывают за один раунд целиком шифруемый блок. Обработка данных сводится, в основном, к заменам (когда, например, фрагмент входного значения заменяется другим фрагментом в соответствии с таблицей замен, которая может зависеть от значения ключа Ki ) и перестановкам, зависящим от ключа Ki (упрощенная схема показана на рис. 4).

Рис. 4. Подстановочно-перестановочная сеть.

Впрочем, такие операции характерны и для других видов алгоритмов шифрования, поэтому, на мой взгляд, название "подстановочно-перестановочная сеть" является достаточно условным.

SP-сети распространены существенно реже, чем сети Фейстеля; в качестве примера SP-сетей можно привести алгоритмы Serpent или SAFER+.

3. Алгоритмы со структурой "квадрат" (Square).

Для структуры "квадрат" характерно представление шифруемого блока данных в виде двумерного байтового массива. Криптографические преобразования могут выполняться над отдельными байтами массива, а также над его строками или столбцами.

Структура алгоритма получила свое название от алгоритма Square, который был разработан в 1996 году Винсентом Риджменом (Vincent Rijmen) и Джоан Деймен (Joan Daemen) - будущими авторами алгоритма Rijndael, ставшего новым стандартом шифрования США AES после победы на открытом конкурсе. Алгоритм Rijndael также имеет Square-подобную структуру; также в качестве примера можно привести алгоритмы Shark (более ранняя разработка Риджмена и Деймен) и Crypton. Недостатком алгоритмов со структурой "квадрат" является их недостаточная изученность, что не помешало алгоритму Rijndael стать новым стандартом США.

Рис. 5. Алгоритм Rijndael.

На рис. 5 приведен пример операции над блоком данных, выполняемой алгоритмом Rijndael.

4. Алгоритмы с нестандартной структурой, то есть те алгоритмы, которые невозможно причислить ни к одному из перечисленных типов. Ясно, что изобретательность может быть безгранична, поэтому классифицировать все возможные варианты алгоритмов шифрования представляется сложным. В качестве примера алгоритма с нестандартной структурой можно привести уникальный по своей структуре алгоритм FROG, в каждом раунде которого по достаточно сложным правилам выполняется модификация двух байт шифруемых данных (см. рис. 6).

Рис. 6. Модификация двух байт шифруемых данных.

Строгие границы между описанными выше структурами не определены, поэтому достаточно часто встречаются алгоритмы, причисляемые различными экспертами к разным типам структур. Например, алгоритм CAST-256 относится его автором к SP-сети, а многими экспертами называется расширенной сетью Фейстеля. Другой пример - алгоритм HPC, называемый его автором сетью Фейстеля, но относимый экспертами к алгоритмам с нестандартной структурой.

3. Применение сим метричного алгоритма шифрования

криптография алгоритм симметричный шифрование

Симметричные методы шифрования удобны тем, что для обеспечения высокого уровня безопасности передачи данных не требуется создания ключей большой длины. Это позволяет быстро шифровать и дешифровать большие объемы информации. Вместе с тем, и отправитель, и получатель информации владеют одним и тем же ключом, что делает невозможным аутентификацию отправителя. Кроме того, для начала работы с применением симметричного алгоритма сторонам необходимо безопасно обменяться секретным ключом, что легко сделать при личной встрече, но весьма затруднительно при необходимости передать ключ через какие-либо средства связи.

Схема работы с применением симметричного алгоритма шифрования состоит из следующих этапов:

стороны устанавливают на своих компьютерах программное обеспечение, обеспечивающее шифрование и расшифровку данных и первичную генерацию секретных ключей;

генерируется секретный ключ и распространяется между участниками информационного обмена. Иногда генерируется список одноразовых ключей. В этом случае для каждого сеанса передачи информации используется уникальный ключ. При этом в начале каждого сеанса отправитель извещает получателя о порядковом номере ключа, который он применил в данном сообщении;

отправитель шифрует информацию при помощи установленного программного обеспечения, реализующего симметричный алгоритм шифрования;

зашифрованная информация передается получателю по каналам связи;

получатель дешифрует информацию, используя тот же ключ, что и отправитель.

Ниже приведен обзор некоторых алгоритмов симметричного шифрования:

DES (Data Encryption Standard). Разработан фирмой IBM и широко используется с 1977 года. В настоящее время несколько устарел, поскольку применяемая в нем длина ключа недостаточна для обеспечения устойчивости к вскрытию методом полного перебора всех возможных значений ключа. Вскрытие этого алгоритма стало возможным благодаря быстрому развитию вычислительной техники, сделавшему с 1977 года огромный скачок;

Triple DES. Это усовершенствованный вариант DES, применяющий для шифрования алгоритм DES три раза с разными ключами. Он значительно устойчивее к взлому, чем DES;

Rijndael. Алгоритм разработан в Бельгии. Работает с ключами длиной 128, 192 и 256 бит. На данный момент к нему нет претензий у специалистов по криптографии;

Skipjack. Алгоритм создан и используется Агентством национальной безопасности США. Длина ключа 80 бит. Шифрование и дешифрование информации производится циклически (32 цикла);

IDEA. Алгоритм запатентован в США и ряде европейских стран. Держатель патента компания Ascom-Tech. Алгоритм использует циклическую обработку информации (8 циклов) путем применения к ней ряда математических операций;

RC4. Алгоритм специально разработан для быстрого шифрования больших объемов информации. Он использует ключ переменной длины (в зависимости от необходимой степени защиты информации) и работает значительно быстрее других алгоритмов. RC4 относится к так называемым потоковым шифрам.

В соответствии с законодательством США (соглашение International Traffic in Arms Peguiation), криптографические устройства, включая программное обеспечение, относится к системам вооружения.

Поэтому при экспорте программной продукции, в которой используется криптография, требуется разрешение Госдепартамента. Фактически экспорт криптографической продукции контролирует NSA (National Security Agency). правительство США очень неохотно выдаёт подобные лицензии, поскольку это может нанести ущерб национальной безопасности США. Вместе с тем совсем недавно компании Hewlett-Packard выдано разрешение на экспорт её криптографического комплекса Ver Secure в Великобританию, Германию, Францию, Данию и Австралию. Теперь НР может эксплуатировать в эти страны системы, использующие 128-битный криптостандарт Triple DES ,который считается абсолютно надёжным.

ЗАКЛЮЧЕНИЕ

Выбор для конкретных ИС должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей. По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.

Однако, этот критерий не учитывает других важных требований к криптосистемам:

* невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

* совершенство используемых протоколов защиты,

* минимальный объем используемой ключевой информации,

* минимальная сложность реализации (в количестве машинных операций), ее стоимость,

* высокая оперативность.

Желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы.

Для учета стоимости, трудоемкости и объема ключевой информации можно использовать удельные показатели - отношение указанных параметров к мощности множества ключей шифра.

Часто более эффективным при выборе и оценке криптографической системы является использование экспертных оценок и имитационное моделирование.

В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

Эллиптические функции также относятся к симметричным методам шифрования.

Эллиптические кривые - математические объекты, которые математики интенсивно изучают начиная с 17 - го века. Н.Коблиц и В. Миллер независимо друг от друга предложили системы системы криптозащиты с открытым ключом, использующие для шифрования свойства аддитивной группы точек на эллиптической кривой. Эти работы легли в основу криптографии на основе алгоритма эллиптических кривых.

Множество исследователей и разработчиков испытывали алгоритм ЕСС на прочность. Сегодня ЕСС предлагает более короткий и быстрый открытый ключ, обеспечивающий практичную и безопасную технологию, применимую в различных областях. Применение криптографии на основе алгоритма ЕСС не требует дополнительной аппаратной поддержки в виде криптографического сопроцессора. Всё это позволяет уже сейчас применять криптографические системы с открытым ключом и для создания недорогих смарт-карт.

Список литературы

1) Чмора А.Л. Современная прикладная криптография. 2-е изд., стер. - М.: Гелиос АРВ, 2004. - 256с.: ил.

2) А.Г. Ростовцев, Н.В. Михайлова Методы криптоанализа классических шифров.

3) А. Саломаа Криптография с открытым ключом.

4) Герасименко В.А. Защита информации в автоматизированных системах обработки данных кн. 1.-М.: Энергоатомиздат. -2004.-400с.

5) Грегори С. Смит. Программы шифрования данных // Мир ПК -2007. -№3.

6) Ростовцев А. Г., Михайлова Н. В. Методы криптоанализа классических шифров. -М.: Наука, 2005. -208 с.

Размещено на http://www.allbest.ru/

Подобные документы

    История появления симметричных алгоритмов шифрования. Роль симметричного ключа в обеспечении степени секретности сообщения. Диффузия и конфузия как способы преобразования бит данных. Алгоритмы шифрования DES и IDEA, их основные достоинства и недостатки.

    лабораторная работа , добавлен 18.03.2013

    Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.

    курсовая работа , добавлен 09.05.2012

    Принцип программной реализации классических криптографических методов. Метод шифрования с использованием таблицы Виженера. Создание текстового редактора "Блокнот", содержащего методы шифрования. Вербальный алгоритм и программа для методов шифрования.

    курсовая работа , добавлен 20.01.2010

    История криптографии. Сравнение алгоритмов шифрования, применение в операционной системе. Анализ продуктов в области пользовательского шифрования. Включение и отключение шифрования на эллиптических кривых. Использование хеш-функции. Электронная подпись.

    курсовая работа , добавлен 18.09.2016

    Появление шифров, история эволюции криптографии. Способ приложения знаний особенностей естественного текста для нужд шифрования. Критерии определения естественности. Способ построения алгоритмов симметричного шифрования. Криптосистема с открытым ключом.

    реферат , добавлен 31.05.2013

    Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат , добавлен 24.05.2005

    Автоматизация процесса шифрования на базе современных информационных технологий. Криптографические средства защиты. Управление криптографическими ключами. Сравнение симметричных и асимметричных алгоритмов шифрования. Программы шифрования информации.

    курсовая работа , добавлен 02.12.2014

    История алгоритмов симметричного шифрования (шифрования с закрытым ключом). Стандарты на криптографические алгоритмы. Датчики случайных чисел, создание ключей. Сфера интересов криптоанализа. Системы электронной подписи. Обратное преобразование информации.

    краткое изложение , добавлен 12.06.2013

    Основные методы криптографической защиты информации. Система шифрования Цезаря числовым ключом. Алгоритмы двойных перестановок и магические квадраты. Схема шифрования Эль Гамаля. Метод одиночной перестановки по ключу. Криптосистема шифрования данных RSA.

    лабораторная работа , добавлен 20.02.2014

    Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

Алгоритмы шифрования используются для изменения конфиденциальной информации до такого вида, чтобы она не была понятна для прочтения посторонними лицами.

Первые шифры использовались еще во времена Древнего Рима, Древнего Египта и Древней Греции. Одним из известных шифров является шифр Цезаря . Данный алгоритм работал следующим образом: каждая буква имеет свой порядковый номер в алфавите, который сдвигался на $3$ значения влево. Сегодня подобный алгоритм не обеспечивает ту защиту, которую давал во времена его использования.

Сегодня разработано большое количество алгоритмов шифрования, в том числе стандартных, которые обеспечивают надежную защиту конфиденциальной информации.

Разделяют алгоритмы шифрования на симметричные (к ним относятся AES, CAST, ГОСТ, DES, Blowfish) и асимметричные (RSA, El-Gamal).

Симметричные алгоритмы

Замечание 1

Симметричными алгоритмами шифрования используется один и тот же ключ для шифрования и дешифрования информации.

При передаче зашифрованной информации необходимо передавать и ключ для дешифрования. Слабым местом такого способа является канал передачи данных. В случае его незащищенности или возможности прослушивания ключ для дешифрования может стать доступным злоумышленнику.

Асимметричные алгоритмы

Замечание 2

Асимметричными алгоритмами используется два ключа – один для шифрования, другой – для дешифрования.

Каждый пользователь должен обладать парой ключей – открытым и секретным ключом.

Ключ шифрования

Определение 1

Ключ шифрования представляет собой случайную или специальным образом созданную последовательность бит, которая является переменным параметром алгоритма шифрования.

При шифровании одних и тех же данных одним алгоритмом, но с использованием разных ключей, результаты получаются разные.

Программы для шифрования (WinRAR, Rohos и т.д.) создают ключ из пароля, задаваемого пользователем.

Ключ шифрования может быть разной длины, измеряемой в битах. При увеличении длины ключа повышается теоретическая стойкость шифра. Практически это не всегда так.

Стойкость алгоритма шифрования

Замечание 3

Алгоритм шифрования считается стойким до тех пор, пока не доказано обратное.

Алгоритмы шифрования

Алгоритм AES (Rijndael) на данный момент является федеральным стандартом шифрования США. В качестве стандарта утвержден Министерством торговли в $2001$ г. Стандартом считается вариант шифра с размером блока $128$ бит. Разработан в $1997$ г. в Бельгии. Возможными размерами ключа являются ключи $128, 192$ и $256$ бит.

Алгоритм ГОСТ 28147-8 является стандартом Российской Федерации на шифрование и имитозащиту данных. Официальным стандартом стал в $1989$ г. Разработан в $1970$-х гг. в Главном Управлении КГБ СССР. Использует ключ размером $256$ бит.

Алгоритм Blowfish использует сложную схему создания ключей, что существенно затрудняет атаку на алгоритм методом перебора. Непригоден для использования в системах частого изменения ключа и при шифровании небольших по объему данных. Алгоритм лучше всего использовать для систем, в которых существует необходимость шифрования больших массивов данных. Разработан в $1993$ г. Используется размер ключа от $32$ до $448$ бит.

Алгоритм DES являлся Федеральным стандартом шифрования США в $1977-2001$ годах. Федеральным стандартом принят в $1977$ г. после введения в действие нового стандарта в $2001$ г. утратил статус стандарта. Разработан в $1972–1975$ гг. исследовательской лабораторией корпорации IBM. Использует ключ размером $56$ бит.

Алгоритм CAST является некоторым образом аналогом алгоритма DES. Использует ключи размером $128$ и $256$ бит.

Основные понятия и определения

По мере образования информационного общества крупным государствам становятся доступны технические средства тотального надзора за миллионами людей. Поэтому криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию, электронные платежи, корпоративную безопасность и другие важные вещи.

Проблемой защиты информации путем ее преобразования занимается криптология , которая разделяется на два направления: криптографию и криптоанализ . Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации. Сфера интересов криптоанализа – исследование возможности расшифрования информации без знания ключей.

Современная криптография включает в себя 4 основных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов – передача конфиденциальной информации по каналам связи, установление подлинности передаваемых сообщений, хранение информации на носителях в зашифрованном виде.

Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа. В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите.

Алфавит – конечное множество используемых для кодирования информации знаков. Примеры:

ü алфавит Z33 – содержит 32 буквы русского алфавита и пробел;

ü алфавит Z256 – символы, входящие в стандартные коды ASCII и КОИ-8;

ü бинарный алфавит Z2 – два символа (0 и 1);

ü восьмеричный или шестнадцатеричный алфавиты.

Текст – упорядоченный набор из элементов алфавита.

Шифрование – преобразовательный процесс замены исходного (открытого) текста на шифрованный текст.

Дешифрование (обратный шифрованию) – преобразовательный процесс замены на основе ключа шифрованного текста на исходный текст.

Ключ – информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство Т [Т 1 , Т 2 , …, Т к ] преобразований открытого текста. Члены этого семейства индексируются или обозначаются символом к ; параметр к является ключом. Пространство ключей К – это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд знаков алфавита.

Криптосистемы разделяются на симметричные и асиммитричные . В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. В асимметричныхсистемах (с открытым ключом) используются два ключа – открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается – с помощью закрытого ключа, известного только получателю сообщения.

Термины распределение ключей и управление ключами относятся к процессам обработки информации, содержанием которых является составление ключей и распределение их между пользователями.

Электронной (цифровой) подписью называется присоединяемой к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая ее стойкость к дешифрованию без знания ключа (т.е. стойкостью к криптоанализу). Имеется несколько показателей криптостойкости:

количество всех возможных ключей;

среднее время, необходимое для криптоанализа.

Требования к криптосистемам

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако имеет высокую производительность, простоту, защищенность. Программная реализация более практична, допускает известную гибкость в использовании.

Общепринятые требования к криптографическим системам:

· зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

· число операций, необходимых для определения использованного ключа по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не менее общего числа возможных ключей;

· число операций, необходимых для расшифровывания информации путем перебора возможных ключей, должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможностей сетевых вычислений);

· знание алгоритма шифрования не должно влиять на надежность защиты;

· незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения;

· структурные элементы алгоритма шифрования должны быть неизменными;

· дополнительные биты, вводимые в сообщение в процессе шифрования, должны быть полностью и надежно скрыты в шифрованном тексте;

· длина шифрованного текста должна быть равной длине исходного текста;

· не должно быть простых и легко устанавливаемых зависимостей между ключами, последовательно используемыми в процессе шифрования;

· любой ключ из множества возможных должен обеспечивать надежную защиту информации;

· алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

Основные алгоритмы шифрования

Метод шифровки-дешифровки называют шифром . Ключ, используемый для дешифровки, может не совпадать с ключом, используемым для шифрования, однако в большинстве алгоритмов ключи совпадают.

Алгоритмы с использованием ключа делятся на два класса: симметричные (с секретным ключом) и асимметричные (с открытым ключом). Симметричные алгоритмы используют один и тот же ключ для шифрования и для дешифрования или же ключ для дешифрования просто вычисляется по ключу шифрования. В асимметричных алгоритмах используются разные ключи, и ключ для дешифровки не может быть вычислен по ключу шифровки.

Симметричные алгоритмы подразделяются на потоковые шифры и блочные шифры. Потоковые позволяют шифровать информацию побитово, в то время как блочные работают с некоторым набором битов данных (обычно размер блока составляет 64 бита ) и шифруют этот набор как единое целое.

Обычно ключ шифрования представляет собой файл или массив данных и хранится на персональном ключевом носителе (например, флешке или смарт-карте); обязательно принятие мер, обеспечивающих недоступность персонального ключевого носителя кому-либо, кроме его владельца.

Подлинность обеспечивается за счет того, что без предварительного расшифровывания практически невозможно осуществить смысловую модификацию и подлог криптографически закрытого сообщения. Фальшивое сообщение не может быть правильно зашифровано без знания секретного ключа.

Целостность данных обеспечивается присоединением к передаваемым данным специального кода (имитовставки ), вырабатываемой по секретному ключу. Имитовставка является разновидностью контрольной суммы, т.е. некоторой эталонной характеристикой сообщения, по которой осуществляется проверка целостности последнего. Алгоритм формирования имитовставки должен обеспечивать ее зависимость по некоторому сложному криптографическому закону от каждого бита сообщения. Проверка целостности сообщения выполняется получателем сообщения путем выработки по секретному ключу имитовставки, соответствующей полученному сообщению, и ее сравнения с полученным значением имитовставки. При совпадении делается вывод о том, что информация не была модифицирована на пути от отправителя к получателю.

Симметричное шифрование идеально подходит для шифрования информации «для себя», например, с целью предотвращения несанкционированного доступа к ней в отсутствие владельца. Обладаю высокой скоростью шифрования, одноключевые криптосистемы позволяют решать многие важные задачи защиты информации. Однако автономное использование симметричных криптосистем в компьютерных сетях порождает проблему распределения ключей шифрования между пользователями.

Перед началом обмена зашифрованными данными необходимо обменяться секретными ключами со всеми адресатами. Передача секретного ключа симметричной криптосистемы не может быть осуществлена по общедоступным каналам связи, секретный ключ надо передавать отправителю и получателю по защищенному каналу (или с помощью курьера). Для обеспечения эффективной защиты циркулирующих в сети сообщений необходимо огромное число часто меняющихся ключей (один ключ на каждую пару пользователей). Проблема распределения секретных ключей при большом количестве пользователей является весьма трудоемкой и сложной задачей. В сети на N пользователей необходимо распределить N(N-1)/2 секретных ключей.

Асимметричные шифры допускают, чтобы открытый ключ был доступен всем (например, опубликован в газете). Это позволяет любому зашифровать сообщение. Однако расшифровать это сообщение сможет только пользователь, владеющий ключом дешифровки. Ключ для шифрования называют открытым ключом , а ключ для дешифрования – закрытым ключом или секретным ключом .

Секретный и открытый ключи генерируются попарно. Секретный ключ должен оставаться у его владельца и быть надежно защищен от НСД (аналогично ключу шифрования в симметричных алгоритмах). Копия открытого ключа должна находиться у каждого абонента криптографической сети, с которым обменивается информацией владелец секретного ключа.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают свойством: при заданном значении х относительно просто вычислить значение f(x) , однако, если yM = j(x) , то нет простого пути вычисления значения х . Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом.

Процесс передачи зашифрованной информации в асимметричной криптосистеме осуществляется следующим образом.

Подготовительный этап :

· абонент В генерирует пару ключей: секретный ключ k в и открытый ключ К в;

· открытый ключ К в посылается абоненту А и остальным абонентам (или делается доступным, например на разделяемом ресурсе).

Использование (обмен информацией между А и В):

· абонент А зашифровывает сообщение с помощью открытого ключа К в абонента В и отправляет шифротекст абоненту В;

· абонент В расшифровывает сообщение с помощью своего секретного ключа k в; никто другой не может расшифровать данное сообщение, т.к. не имеет секретного ключа абонента В.

Защита информации в асимметричной криптосистеме основана на секретности ключа k в получателя сообщения.

Преимущества асимметричных криптографических систем перед симметричными криптосистемами:

ü в асимметричных криптосистемах решена сложная проблема распределения ключей между пользователями, т.к. каждый пользователь может сгенерировать свою пару ключей сам, а открытые ключи пользователей могут свободно публиковаться и распространяться по сетевым коммуникациям;

ü исчезает квадратичная зависимость числа ключей от числа пользователей; в асимметричной криптосистеме число используемых ключей связано с числом абонентов линейной зависимостью (в системе из N пользователей используется 2N ключей), а не квадратичной, как в симметричных системах;

ü асимметричные криптосистемы позволяют реализовывать протоколы взаимодействия сторон, которые не доверяют друг другу, поскольку при использовании асимметричных криптосистем закрытый ключ должен быть известен только его владельцу.

Недостатки асимметричных криптосистем:

ü на настоящий момент нет математического доказательства необратимости используемых в асимметричных алгортмах функций;

ü асимметричное шифрование существенно медленнее симметричного, поскольку при шифровке и расшифровке используются весьма ресурсоемкие операции; по этой же причине реализовать аппаратный шифратор с асимметричным алгоритмом существенно сложнее, чем реализовать аппаратно симметричный алгоритм;

ü необходимость защиты открытых ключей от подмены.

Современные алгоритмы шифровки-дешифровки достаточно сложны и их невозможно выполнять вручную. Настоящие криптографические алгоритмы разработаны для использования компьютерами или специальными аппаратными устройствами. В большинстве приложений криптография производится программным обеспечением и имеется множество доступных криптографических пакетов.

Симметричные алгоритмы работают быстрее, чем асимметричные. На практике оба типа алгортмов часто используются вместе: алгоритм с открытым ключом используется для того, чтобы передать случайным образом сгенерированный секретный ключ, который затем используется для дешифровки сообщения.

Многие качественные криптографические алгоритмы доступны широко. Наиболее известными симметричными алгоритмами являются DES и IDEA; лучший асимметричный алгоритм – RSA. В России за стандарт шифрования принят ГОСТ 28147-89.

В таблице 1 приведена классификации криптографического закрытия информации.

Таблица 1

Виды преобразования Способы преобразований Разновидности способа Способ реализации
Шифрование Замена (подстановка) Простая (одноалфавитная) Прогр.
Многоалфавитная одноконтурная обыкновенная Прогр.
Многоалфавитная одноконтурная монофоническая Прогр.
Прогр.
Перестановка Простая Прогр.
Усложненная по таблице Прогр.
Усложненная по маршрутам Прогр.
Аналитическое преобразование По правилам алгебры матриц Прогр.
По особым зависимостям Прогр.
Гаммирование С конечной короткой гаммой Аппар.-прогр.
С конечной длинной гаммой Аппар.-прогр.
С бесконечной гаммой Аппар.-прогр.
Комбинированные Замена+перестановка Аппар.-прогр.
Замена+гаммирование Аппар.-прогр.
Перестановка+гаммирование Аппар.-прогр.
Гаммирование+гаммирование Аппар.-прогр.
Кодирование Смысловое По специальным таблицам (словарям) Прогр.
Символьное По кодовому алфавиту Прогр.
Другие виды Рассечение-разнесение Смысловое Аппар.-прогр.
Механическое Прогр.
Сжатие-расширение

I. Под шифрованием понимается такой вид криптографического закрытия, при котором преобразованию подвергается каждый символ защищаемого сообщения.

Все известные способы шифрования можно разбить на пять групп: замена (подстановка), перестановка, аналитическое преобразование, гаммирование и комбинированное шифрование. Каждый из этих способов может иметь несколько разновидностей.

Разновидности способа замена (подстановка ):

1) Простая (одноалфавитная) – символы шифруемого текста заменяются другими символами того же самого алфавита. Если объем зашифрованного текста большой, то частоты появления букв в зашифрованном тексте будут ближе к частотам появления букв в алфавите (того языка, на котором написан текст) и расшифровка будет очень простой. Данный способ в настоящее время используется редко и в тех случаях, когда шифруемый текст короток.

2) Многоалфавитная подстановка - наиболее простой вид преобразований, заключающийся в замене символов исходного текста на символы других алфавитов по более или менее сложному правилу. Для обеспечения высокой криптостойкости требуется использование больших ключей.

При многоалфавитной одноконтурной обыкновенной подстановке для замены символов исходного текста используется несколько алфавитов, причем смена алфавита осуществляется последовательно и циклически, т.е. первый символ заменяется соответствующим символом первого алфавита, второй – символом второго алфавита и т.д. до тех пор, пока не будут использованы все выбранные алфавиты. После этого использование алфавитов повторяется.

Особенностью многоалфавитной одноконтурной монофонической подстановки является то, что количество и состав алфавитов выбираются таким образом, чтобы частоты появления всех символов в зашифрованном тексте были одинаковыми. При таком положении затрудняется криптоанализ зашифрованного текста с помощью его статистической обработки. Выравнивание частот появления символов достигается за счет того, что для часто встречающихся символов исходного текста предусматривается использование большего числа заменяющих элементов, чем для редко встречающихся.

Многоалфавитная многоконтурная подстановка заключается в том, что для шифрования используется несколько наборов (контуров) алфавитов, используемых циклически, причем каждый контур в общем случае имеет свой индивидуальный период применения. Этот период исчисляется, как правило, количеством знаков, после зашифровки которых меняется контур алфавитов.

Способ перестановки - несложный способ криптографического преобразования. Используется, как правило, в сочетании с другими способами. Данный способ заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Все процедуры шифрования и расшифровки способом перестановки являются в достаточной степени формализованными и могут быть реализованы алгоритмически.

Шифрование простой перестановкой осуществляется следующим образом:

· выбирается ключевое слово с неповторяющимися символами;

· шифруемый текст записывается последовательными строками под символами ключевого слова;

· зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если он цифровой).

Пример:

открытый текст: БУДЬТЕ ОСТОРОЖНЫ

ключ: 5 8 1 3 7 4 6 2

схема шифрования:

Б У Д Ь Т Е q О (где q – пробел)

С Т О Р О Ж Н Ы

Группируем по 2 символа и получаем зашифрованный текст:

ДООЫЬРЕЖБСqНТОУТ

Недостаток шифрования простой перестановкой заключается в том, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после шифрования определенного количества знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и дешифрования.

Усложненная перестановка по таблицам заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Таблица представляет собой матрицу, размеры которой могут быть выбраны произвольно. В нее, как в случае простой перестановки, записываются знаки шифруемого текста. Усложнение заключается в том, что определенное число клеток таблицы не используются. Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по (m x n S ) элементов записывается в таблицу (m x n – размеры таблицы, S – количество неиспользуемых элементов). Далее процедура шифрования аналогична простой перестановке.

Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость шифрованного текста.

Усложненная перестановка по маршрутам обладает высокой стойкостью шифрования, использует усложненный метод перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считаются по маршрутам Гамильтона, причем используется несколько различных маршрутов.

Способ шифрования с помощью аналитических преобразований обеспечивает достаточно надежное закрытие информации. Для этого можно применять методы алгебры матриц, например, умножение матрицы на вектор. Если матрицу использовать в качестве ключа, а вместо компонента вектора подставлять символы исходного текста, то компоненты результирующего вектора будут представлять собой символы зашифрованного текста. Расшифровывание осуществляется с использованием того же правила умножения матрицы на вектор, только в качестве основы берется матрица, обратная той, с помощью которой осуществляется закрытие, а в качестве вектора-сомножителя – соответствующее количество символов закрытого текста. Значениями вектора-результата будут цифровые эквиваленты знаков открытого текста.

Гаммирование - этот метод заключается в наложении на исходный текст некоторой псевдослучайной последовательности, генерируемой на основе ключа. Процедуру наложения гаммы на исходный текст можно осуществлять двумя способами. В первом способе символы исходного текста и гаммы заменяются цифровыми эквивалентами, которые затем складываются по модулю К , где К – количество символов в алфавите, т.е.

t c = (t p + t g) mod K , где t c , t p ,t g – символы соответственно зашифрованного текста, исходного текста и гаммы.

При втором способе символы исходного текста и гаммы представляются в виде двоичного кода, а затем соответствующие разряды складываются по модулю 2. Вместо сложения по модулю 2 при гаммировании можно использовать другие логические операции, например, преобразование по правилу логической эквивалентности или логической неэквивалентности. Такая замена равносильна введению еще одного ключа, которым является выбор правила формирования символов зашифрованного сообщения из символов исходного текста и гаммы.

Стойкость шифрования способом гаммирования определяется, главным образом, свойствами гаммы – длительностью периода и равномерностью статистических характеристик. Последнее свойство обеспечивает отсутствие закономерностей в появлении различных символов в пределах периода.

При хороших статистических свойствах гаммы стойкость шифрования определяется только длиной ее периода. При этом, если длина периода гаммы превышает длину шифруемого текста, то такой шифр теоретически является абсолютно стойким. В качестве бесконечной гаммы может быть использована любая последовательность случайных символов, например, последовательность цифр числа ПИ. При шифровании с помощью ЭВМ последовательность гаммы формируется с помощью датчика псевдослучайных чисел.

Комбинированные способы шифрования используют одновременно несколько различных способов, т.е. последовательное шифрование исходного текста с помощью двух или более способов. Это является достаточно эффективным средством повышения стойкости шифрования.

Типичным примером комбинированного шифра является национальный стандарт США криптографического закрытия данных (DES).

II. Под кодированием понимается такой вид криптографического закрытия, когда некоторые элементы защищаемых данных (это не обязательно отдельные символы) заменяются заранее выбранными кодами (цифровыми, буквенными, буквенно-цифровыми сочетаниями и т. п.).

Этот метод имеет две разновидности: смысловое и символьное кодирование. При смысловом кодировании кодируемые элементы имеют вполне определенный смысл (слова, предложения, группы предложений). При символьном кодировании кодируется каждый символ защищаемого сообщения. Символьное кодирование по существу совпадает с шифрованием заменой.

При правильном использовании коды намного сложнее раскрыть, чем другие классические системы. Это объясняется тремя причинами. Во-первых , большая длина используемого кода (при шифровании – несколько сотен бит; кодовая книга – сотни тысяч – миллион бит). Во-вторых , коды удаляют избыточность – работа криптоаналитика осложняется. В-третьих , коды работают с относительно большими блоками открытого текста (словами и фразами) и, следовательно, скрывают локальную информацию, которая, в противном случае, могла бы дать ценные «зацепки» для криптоаналитика.

К недостаткам кодирования следует отнести то, что ключ при кодировании используется недостаточно хорошо, т.к. при кодировании отдельного слова и фразы используется только очень малая часть кодовой книги. В результате код при интенсивном использовании поддается частичному анализу и оказывается особенно чувствительным к вскрытию при наличии известного открытого текста. По этим причинам для обеспечения большей надежности коды необходимо чаще менять.

III. Другие способы криптографического закрытия включают в себя рассечение/разнесение и сжатие данных. Рассечение/разнесение данных состоит в том, что массив защищаемых данных рассекается на такие элементы, каждые из которых не позволяет раскрыть содержание защищаемой информации, и выделенные таким образом элементы размещаются в различных зонах памяти. Обратная процедура называется сборкой данных. Совершенно очевидно, что алгоритм разнесения и сборки данных должен сохраняться в тайне.

Сжатие данных представляет собой замену часто встречающихся одинаковых строк данных или последовательностей одинаковых символов некоторыми заранее выбранными символами.

Хеш-функции

Хеш-функцией называется односторонняя функция, предназначенная для получения дайджеста или "отпечатков пальцев" файла, сообщения или некоторого блока данных.

Изначально функции хеширования использовались как функции создания уникального образа информационных последовательностей произвольной длины, с целью идентификации и определения их подлинности. Сам образ должен быть небольшим блоком фиксированной длины, как правило, 30, 60, 64, 128, 256, или 512 бит. Поэтому операции поиска сортировки и другие с большими массивами или базами данных существенно упрощаются, т.е. занимают гораздо меньшее время. Для обеспечения требуемой вероятности ошибки необходимо обеспечивать ряд требований к функции хеширования:

· хеш-функция должна быть чувствительна к всевозможным изменениям в тексте M, таким как вставки, выбросы, перестановки;

· хеш-функция должна обладать свойством необратимости, то есть задача подбора документа M", который обладал бы требуемым значением хеш-функции, должна быть вычислительно неразрешима;

· вероятность того, что значения хеш-функций двух различных документов (вне зависимости от их длин) совпадут, должна быть ничтожно мала.

Обеспечить эти требования могут большое количество существующих математических функций. Если данные функции используются для сортировки, поиска и т.д. Однако позднее, опираясь на работы Симонсона по теории аутентификации, стало явным целесообразность использования методов хеширования в схемах аутентификации сообщений в каналах связи и телекоммуникационных системах. В связи с чем, открылся ряд направлений в исследованиях в области криптографии, которые связаны с разработкой новых и усовершенствованием существующих хеш-функций. Основная идея использования хеширующих функций является получение на их основе однонаправленных функций, которые являются основным продуктом для разработки современных криптографических механизмов и методов аутентификации.
Рассмотрим основные понятия касающиеся однонаправленных функций хеширования.

Большинство хеш-функций строится на основе однонаправленной функции f( ) , которая образует выходное значение длиной n при задании двух входных значений длиной n . Этими входами являются блок исходного текста Mi и хеш-значение Hi–1 предыдущего блока текста (рис.1):

Hi = f (Mi, Hi–1) .

Хеш-значение, вычисляемое при вводе последнего блока текста, становится хеш-значением всего сообщения M.

Рис.1. Схема однонаправленной хэш-функции

В результате однонаправленная хеш-функция всегда формирует выход фиксированной длины n (независимо от длины входного текста). Алгоритм хеширования является итерационным, поэтому функции хеширования еще называют итерационными алгоритмами. Сущность алгоритма хеширования заключается в его односторонности, т.е. функция должна работать в одну сторону – сжимать, перемешивать и рассеивать, но никогда не восстанавливать. Подобные схемы позволяют отслеживать изменения исходных текстов, что является обеспечением целостности данных, а в алгоритмах цифровой подписи еще обеспечивать аутентичность данных. Однако в чистой форме аутентичность эти функции не позволяют подтвердить.

Алгоритм шифрования данных DES (Data Encryption Standard) был опубликован в 1977 г. и остается пока распространенным блочным симметричным алгоритмом, используемым в системах защиты коммерческой информации.

Алгоритм DES построен в соответствии с методологией сети Фейстеля и состоит из чередующейся последовательности перестановок и подстановок. Алгоритм DES осуществляет шифрование 64-битовых блоков данных с помощью 64-битового ключа, в котором значащими являются 56 бит (остальные 8 - проверочные биты для контроля на четность).

Процесс шифрования заключается в начальной перестановке битов 64-битового блока, 16 циклах (раундах) шифрования и, наконец, в конечной перестановке битов (рис. 6.2).

Рис. 6.2.

Расшифровывание в DES является операцией, обратной шифрованию, и выполняется путем повторения операций шифрования в обратной последовательности.

Основные достоинства алгоритма DES:

  • используется только один ключ длиной 56 бит;
  • относительная простота алгоритма обеспечивает высокую скорость обработки;
  • зашифровав сообщение с помощью одного пакета программ, для расшифровки можно использовать любой другой пакет программ, соответствующий алгоритму DES;
  • криптостойкость алгоритма вполне достаточна для обеспечения информационной безопасности большинства коммерческих приложений.

Современная микропроцессорная техника позволяет за достаточно приемлемое время взламывать симметричные блочные шифры с длиной ключа 40 бит. Для такого взламывания используется метод полного перебора - тотального опробования всех возможных значений ключа (метод «грубой силы»). До недавнего времени DES считался относительно безопасным алгоритмом шифрования.

Существует много способов комбинирования блочных алгоритмов для получения новых более стойких алгоритмов. Одним из таких способов является многократное шифрование - использование блочного алгоритма несколько раз с разными ключами для шифрования одного и того же блока открытого текста. При трехкратном шифровании можно применить три различных ключа.

Алгоритм 3-DES (Triple DES - тройной DES) используется в ситуациях, когда надежность алгоритма DES считается недостаточной.

Сегодня все шире используются два современных криптостойких алгоритма шифрования: отечественный стандарт шифрования ГОСТ 28147-89 и новый криптостандарт США - AES (Advanced Encryption Standard).

Стандарт шифрования ГОСТ 28147-89 предназначен для аппаратной и программной реализации, удовлетворяет криптографическим требованиям и не накладывает ограничений на степень секретности защищаемой информации. Алгоритм шифрования данных, определяемый ГОСТ 28147-89, представляет собой 64-битовый блочный алгоритм с 256-битовым ключом.

Данные, подлежащие зашифрованию, разбивают на 64-раз-рядные блоки. Эти блоки разбиваются на два субблока N x и N 2 по 32 бит (рис. 6.3). Субблок /V, обрабатывается определенным образом, после чего его значение складывается со значением субблока N 2 (сложение выполняется по модулю 2, т. е. применяется логическая операция XOR - «исключающее или»), а затем


Рис. 6.3.

субблоки меняются местами. Данное преобразование выполняется определенное число раз («раундов») - 16 или 32, в зависимости от режима работы алгоритма.

В каждом раунде выполняются две операции.

Первая операция - наложение ключа. Содержимое субблока /V, складывается по модулю 2 32 с 32-битовой частью ключа К х. Полный ключ шифрования представляется в виде конкатенации 32-битовых подключей: К 0 , К { , К 2 , К 3 , К 4 , К 5 , К 6 , К 7 . В процессе шифрования используется один из этих подключей - в зависимости от номера раунда и режима работы алгоритма.

Вторая операция - табличная замена. После наложения ключа субблок N { разбивается на 8 частей по 4 бит, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. Затем выполняется побитовый циклический сдвиг субблока влево на 11 бит.

Табличные замены. Блок подстановки 5-box (Substitution box) часто используются в современных алгоритмах шифрования, поэтому стоит пояснить, как организуется подобная операция.

Блок подстановки 5-Ьох состоит из восьми узлов замены (5-блоков замены) 5, S 2 , ..., 5 8 с памятью 64 бит каждый. Поступающий на блок подстановки S 32-битовый вектор разбивают на 8 последовательно идущих 4-битовых векторов, каждый из которых преобразуется в 4-битовый вектор соответствующим узлом замены. Каждый узел замены можно представить в виде таблицы-перестановки 16 4-битовых двоичных чисел в диапазоне 0000... 1111. Входной вектор указывает адрес строки в таблице, а число в этой строке является выходным вектором. Затем 4-битовые выходные векторы последовательно объединяют в 32-би-товый вектор. Узлы замены (таблицы-перестановки) представляют собой ключевые элементы, которые являются общими для сети ЭВМ и редко изменяются. Эти узлы замены должны сохраняться в секрете.

Алгоритм, определяемый ГОСТ 28147-89, предусматривает четыре режима работы: простой замены, гаммирования, гаммиро-вания с обратной связью и генерации имитоприставок. В них используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному.

В режиме простой замены для зашифровывания каждого 64-битового блока информации выполняются 32 описанных выше раунда. При этом 32-битовые подключи используются в следующей последовательности:

К 0 , К { , К 2 , К 3 , К 4 , К 5 , К 6 , К 7 , К 0 , /Г, и т. д. - в раундах с 1-го по 24-й;

К 7 , К ь, К 5 , К 4 , К 3 , К 2 , К х, К 0 - в раундах с 25-го по 32-й.

Расшифровывание в данном режиме проводится точно так же, но с несколько другой последовательностью применения подключей:

К 0 , АГ, К 2 , К 3 , К 4 , К 5 , К ь, К 7 - в раундах с 1-го по 8-й;

К 7 , К 6 , К 5 , К 4 , К 3 , К 2 , К { , К 0 , К 7 , К ь и т. д. - в раундах с 9-го по 32-й.

Все блоки шифруются независимо друг от друга, т. е. результат зашифровывания каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы - гаммирования и гаммирования с обратной связью.

В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бит. Гамма шифра - это специальная последовательность, которая получается в результате определенных операций с регистрами N 1 и Ы 2 (рис. 6.9):

  • 1. В регистры N^ и 1У 2 записывается их начальное заполнение - 64-битовая величина, называемая синхропосылкой.
  • 2. Выполняется зашифровывание содержимого регистров N 1 и М 2 (в данном случае - синхропосылки) в режиме простой замены.
  • 3. Содержимое регистра N^ складывается по модулю (2 32 - 1) с константой С, = 2 24 + 2 16 + 2 8 + 2 4 , а результат сложения записывается в регистр N 1 .
  • 4. Содержимое регистра УУ 2 складывается по модулю 232 с константой С 2 = 2 24 + 2 16 + 2 8 + 1, а результат сложения записывается в регистр УУ 2 .
  • 5. Содержимое регистров N , и Ы 2 подается на выход в качестве 64-битового блока гаммы шифра (в данном случае N^ и УУ 2 образуют первый блок гаммы).

Если необходим следующий блок гаммы (т. е. необходимо продолжить зашифровывание или расшифровывание), выполняется возврат к операции 2.

Для расшифровывания гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция Х(Ж. Поскольку эта операция обратима, в случае правильно выработанной гаммы получается исходный текст (табл. 6.1).

Таблица 6.1. Зашифровывание и расшифровывание в режиме гаммирования

Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должен быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровывании информации. В противном случае получить исходный текст из зашифрованного не удастся.

В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка не секретна, однако есть системы, где синхропосылка такой же секретный элемент, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент.

В режиме гаммирования с обратной связью для заполнения регистров Л", и ІУ 2 , начиная со 2-го блока, используется не предыдущий блок гаммы, а результат зашифрования предыдущего блока открытого текста (рис. 6.4). Первый же блок в данном режиме генерируется полностью аналогично предыдущему.

Рассматривая режим генерации имитоприставок, следует определить понятие предмета генерации. Имитоприставка - это криптографическая контрольная сумма, вычисляемая с исполь-

Рис. 6.4.

зованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-битовый блок массива информации, для которого вычисляется имитоприставка, записывается в регистры ^ и А^ 2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в Л", и Ы 2 .

Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-битовое содержимое регистров Л^, и А^ 2 или его часть и называется имитопри-ставкой. Размер имитоприставки выбирается, исходя из требуемой достоверности сообщений: при длине имитоприставки г бит вероятность, что изменение сообщения останется незамеченным, равна 2~ г.

Чаще всего используется 32-битовая имитоприставка, т. е. половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы - в первую очередь электронная цифровая подпись.

При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровывании какой-либо информации и посылается вместе с шифртекстом. После расшифровывания вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают, значит шифр-текст был искажен при передаче или при расшифровывании использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифровывания ключевой информации при использовании многоключевых схем.

Алгоритм ГОСТ 28147-89 является очень стойким алгоритмом - в настоящее время для его раскрытия не предложено более эффективных методов, чем упомянутый выше метод «грубой силы». Его высокая стойкость достигается в первую очередь за счет большой длины ключа - 256 бит. При использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость зависит от количества раундов преобразований, которых по ГОСТ 28147-89 должно быть 32 (полный эффект рассеивания входных данных достигается уже после 8 раундов).

Стандарт шифрования AES. В 1997 г. Американский институт стандартизации NIST (National Institute of Standards & Technology) объявил конкурс на новый стандарт симметричного криптоалгоритма, названного AES (Advanced Encryption Standard). К его разработке были подключены самые крупные центры криптологии всего мира. Победитель этого соревнования фактически становился мировым криптостандартом на ближайшие 10-20 лет.

К криптоалгоритмам - кандидатам на новый стандарт AES - были предъявлены следующие требования:

  • алгоритм должен быть симметричным;
  • алгоритм должен быть блочным шифром;
  • алгоритм должен иметь длину блока 128 бит и поддерживать три длины ключа: 128, 192 и 256 бит.

Дополнительно разработчикам криптоалгоритмов рекомендовалось:

  • использовать операции, легко реализуемые как аппаратно (в микрочипах), так и программно (на персональных компьютерах и серверах);
  • ориентироваться на 32-разрядные процессоры;
  • не усложнять без необходимости структуру шифра, для того чтобы все заинтересованные стороны были в состоянии самостоятельно провести независимый криптоанализ алгоритма и убедиться, что в нем не заложено каких-либо недокументированных возможностей.

Итоги конкурса были подведены в октябре 2000 г. - победителем был объявлен алгоритм Rijndael, разработанный двумя криптографами из Бельгии, Винсентом Риджменом (Vincent Rijmen) и Джоан Даймен (Joan Daemen). Алгоритм Rijndael стал новым стандартом шифрования данных AES .

Алгоритм AES не похож на большинство известных алгоритмов симметричного шифрования, структура которых носит название «сеть Фейстеля» и аналогична российскому ГОСТ 28147-89. В отличие от отечественного стандарта шифрования, алгоритм AES представляет каждый блок обрабатываемых данных в виде двухмерного байтового массива размером 4x4, 4x6 или 4 х 8 в зависимости от установленной длины блока (допускается использование нескольких фиксированных размеров шифруемого блока информации). Далее на соответствующих этапах производятся преобразования либо над независимыми столбцами, либо над независимыми строками, либо вообще над отдельными байтами.

Алгоритм AES состоит из определенного количества раундов (от 10 до 14 - это зависит от размера блока и длины ключа) и выполняет четыре преобразования:

BS (ByteSub) - табличная замена каждого байта массива (рис. 6.5);

SR (ShiftRow) - сдвиг строк массива (рис. 6.6). При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное число байт, зависящее от размера массива. Например, для массива размером 4x4 строки 2, 3 и 4 сдвигаются соответственно на 1, 2 и 3 байта;

МС (MixColumn) - операция над независимыми столбцами массива (рис. 6.7), когда каждый столбец по определенному правилу умножается на фиксированную матрицу с(х);

АК (AddRoundKey) - добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который в свою очередь определенным образом вычисляется из ключа шифрования (рис. 6.8).


Рис. 6.5.

для обработки каждого байта массива State

Рис. 6.6. Преобразование SR (ShiftRow) циклически сдвигает три последних

строки в массиве State

d 2 j

к оз

к зз

Рис. 6.8. Преобразование АК (AddRoundKey) производит сложение XOR каждого

столбца массива State со словом из ключевого набора

Эти преобразования воздействуют на массив State, который адресуется с помощью указателя "state". Преобразование AddRoundKey использует дополнительный указатель для адресации ключа раунда Round Key.

Преобразование BS (ByteSub) является нелинейной байтовой подстановкой, которая воздействует независимо на каждый байт массива State, используя таблицу замен (подстановок) iS-box.

В каждом раунде (с некоторыми исключениями) над шифруемыми данными поочередно выполняются перечисленные

преобразования (рис. 6.9). Исключения касаются первого и последнего раундов: перед первым раундом дополнительно выполняется операция А К, а в последнем раунде отсутствует МС.

Рис. 6.9.

В результате последовательность операций при зашифровы-вании выглядит так:

AK, {BS, SR, MC, АК} (повторяется R - 1 раз), BS, SR, АК.

Количество раундов шифрования R в алгоритме AES переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров).

Расшифровывание выполняется с помощью следующих обратных операций. Выполняется обращение таблицы и табличная замена на инверсной таблице (относительно применяемой при зашифровывании). Обратная операция к SR - это циклический сдвиг строк вправо, а не влево. Обратная операция для МС - умножение по тем же правилам на другую матрицу d(x), удовлетворяющую условию с(х) d{x ) = 1. Добавление ключа АК является обратным самому себе, поскольку в нем используется только операция XOR. Эти обратные операции применяются при расшифровании в последовательности, обратной той, что использовалась при зашифровании.

Все преобразования в шифре AES имеют строгое математическое обоснование. Сама структура и последовательность операций позволяют выполнять данный алгоритм эффективно как на 8-битных так и на 32-битных процессорах. В структуре алгоритма заложена возможность параллельного исполнения некоторых операций, что может поднять скорость шифрования на многопроцессорных рабочих станциях в 4 раза.

Алгоритм AES стал новым стандартом шифрования данных благодаря ряду преимуществ перед другими алгоритмами. Прежде всего он обеспечивает высокую скорость шифрования на всех платформах: как при программной, так и при аппаратной реализации. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями.

Недостатком алгоритма AES можно считать лишь его нетрадиционную схему. Дело в том, что свойства алгоритмов, основанных на «сети Фейстеля», хорошо исследованы, a AES, в отличие от них, может содержать скрытые уязвимости, которые могут обнаружиться только по прошествии какого-то времени с момента начала его широкого распространения.

Для шифрования данных применяются и другие симметричные блочные криптоалгоритмы.

Основные режимы работы блочного симметричного

алгоритма

Большинство блочных симметричных криптоалгоритмов непосредственно преобразуют 64-битовый входной открытый текст в 64-битовый выходной шифрованный текст, однако данные редко ограничиваются 64 разрядами.

Чтобы воспользоваться блочным симметричным алгоритмом для решения разнообразных криптографических задач, разработаны четыре рабочих режима:

  • электронная кодовая книга ЕС В (Electronic Code Book);
  • сцепление блоков шифра СВС (Cipher Block Chaining);
  • обратная связь по шифртексту CFB (Cipher Feed Back);
  • обратная связь по выходу OFB (Output Feed Back).

Эти рабочие режимы первоначально были разработаны для блочного алгоритма DES, но в любом из этих режимов могут работать и другие блочные криптоалгоритмы.

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

Алгоритмы замены или подстановки - символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.

Алгоритмы перестановки - символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.

Алгоритмы гаммирования - символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов «имя пользователя.рwl», в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUр-доступа в Интернет и т.д.). Когда пользователь вводит свой пароль при входе в Windows 95, из него по алгоритму шифрования RC4 генерируется гамма (всегда одна и та же), применяемая для шифрования сетевых паролей. Простота подбора пароля обусловливается в данном случае тем, что Windows всегда предпочитает одну и ту же гамму.

Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

Комбинированные методы. Последовательное шифрование исходного текста с помощью двух и более методов.

Алгоритмы шифрования

Рассмотрим подробнее методы криптографической защиты данных

1. Алгоритмы замены(подстановки)

2. Алгоритм перестановки

3. Алгоритм гаммирования

4. Алгоритмы, основанные на сложных математических преобразованиях

5. Комбинированные методы шифрования

Алгоритмы 1-4 в «чистом виде» использовались раньше, а в наши дни они заложены практически в любой, даже самой сложной программе шифрования. Каждый из рассмотренных методов реализует собственный способ криптографической защиты информации и имеет собственные достоинства и недостатки, но их общей важнейшей характеристикой является стойкость. Под этим понимается минимальный объем зашифрованного текста, статистическим анализом которого можно вскрыть исходный текст. Таким образом, по стойкости шифра можно определить предельно допустимый объем информации, зашифрованной при использовании одного ключа. При выборе криптографического алгоритма для использования в конкретной разработке его стойкость является одним из определяющих факторов.

Все современные криптосистемы спроектированы таким образом, чтобы не было пути вскрыть их более эффективным способом, чем полным перебором по всему ключевому пространству, т.е. по всем возможным значениям ключа. Ясно, что стойкость таких шифров определяется размером используемого в них ключа.

Приведу оценки стойкости рассмотренных выше методов шифрования. Моноалфавитная подстановка является наименее стойким шифром, так как при ее использовании сохраняются все статистические закономерности исходного текста. Уже при длине в 20-30 символов указанные закономерности проявляются в такой степени, что, как правило, позволяет вскрыть исходный текст. Поэтому такое шифрование считается пригодным только для закрывания паролей, коротких сигнальных сообщений и отдельных знаков.

Стойкость простой полиалфавитной подстановки (из подобных систем была рассмотрена подстановка по таблице Вижинера) оценивается значением 20n, где n - число различных алфавитов используемых для замены. При использовании таблицы Вижинера число различных алфавитов определяется числом букв в ключевом слове. Усложнение полиалфавитной подстановки существенно повышает ее стойкость.

Стойкость гаммирования однозначно определяется длинной периода гаммы. В настоящее время реальным становится использование бесконечной гаммы, при использовании которой теоретически стойкость зашифрованного текста также будет бесконечной.

Можно отметить, что для надежного закрытия больших массивов информации наиболее пригодны гаммирование и усложненные перестановки и подстановки.

При использовании комбинированных методов шифрования стойкость шифра равна произведению стойкостей отдельных методов. Поэтому комбинированное шифрование является наиболее надежным способом криптографического закрытия. Именно такой метод был положен в основу работы всех известных в настоящее время шифрующих аппаратов.

Алгоритм DES был утвержден еще долее 20 лет назад, однако за это время компьютеры сделали немыслимый скачок в скорости вычислений, и сейчас не так уж трудно сломать этот алгоритм путем полного перебора всех возможных вариантов ключей (а в DES используется всего 8-байтный),что недавно казалось совершенно невозможным.

ГОСТ 28147-89 был разработан еще спецслужбами Советского Союза, и он моложе DES всего на 10 лет; при разработке в него был заложен такой запас прочности, что данный ГОСТ является актуальным до сих пор.

Рассмотренные значения стойкости шифров являются потенциальными величинами. Они могут быть реализованы при строгом соблюдении правил использования криптографических средств защиты. Основными из этих првил являются: сохранение в тайне ключей, исключения дублирования(т.е. повторное шифрование одного и того же отрывка текста с использованием тех же ключей) и достаточно частая смена ключей.

Заключение

Итак, в этой работе был сделан обзор наиболее распространенных в настоящее время методов криптографической защиты информации и способов ее реализации. Выбор для конкретных систем должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей (М). По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к криптосистемам:

· невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

· совершенство используемых протоколов защиты,

· минимальный объем используемой ключевой информации,

· минимальная сложность реализации (в количестве машинных операций), ее стоимость,

· высокая оперативность.

Поэтому желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы. Но в любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в системе информации.


Практическая часть:

Задание 1.

1) Заполняем поле X выполнив

1.1 Задаем вручную первое значение

1.2 Выполняем Правка->Заполнить->

2) Заполняем поле значений функции g =

Рис.1.1 – Формула функции g(x)

2.1) Просчитываем значения функций

3) Построение графиков

3.1) Выделяем ячейки с значениями Функций g

3.2) Выбираем мастер диаграмм

Рис.1.2 – Мастер диаграмм - График

Далее ->ряд

Рис.1.3 – Мастер диаграмм – подпись осей

Выделяем значение оси X

Нажимаем Ввод (enter)

3.3) Даем имена графикам

3.4) Выделяем ячейку с формулой графика

3.6) Выбираем закладку ->Линии сетки, выставляем

X промежуточные линии, Y Основные линии ->Далее

3.7) Помещаем график функции на имеющемся листе -> (Готово)

4) В итоге получаем (Рис.1.4)

Рис.1.4 – График функции g(x)

1.2.

1) Определяем в полях таблицы функции будущих графиков

Рис.1.5 – Подпись функций будущих графиков

2) Заполняем поле X выполнив:

2.1 Задаем вручную первое значение

2.2 Выполняем Правка->Заполнить->Прогрессия (по столбцам, арифметическая, шаг, предельное значение) при х [-2;2]

3) Просчитываем значения функций y=2sin( x) – 3cos( x), z = cos²(2 x) – 2sin( x).


Рис.1.6 – Формулы функций y(x) и z(x)

4) Построение графиков

4.1Выделяем ячейки с значениями Функций y и z

Выбираем мастер диаграмм

Рис.1.7 - Мастер диаграмм - График

Выделяем значение оси X

Нажимаем Ввод (enter)

4.2) Даем имена графикам

4.3) Выделяем ячейку с формулой графика

Нажимаем ввод (enter) , потом тоже самое проделываем со вторым рядом

4.5) Выбираем закладку ->Линии сетки, выставляем

X промежуточные линии, Y Основные линии ->Далее

4.6) Помещаем график функции на имеющемся листе -> (Готово)

5) В итоге получаем (Рис.1.8)

Рис.1.8 – Графики функций y(x) и z(x)

Задание 2.

· Создание списка «Отдела кадров»

Рис.2.1 Список «Отдела кадров»

· Сортировка

Рис.2.2 – Сортировка по полю Имя

В итоге получаем (Рис.2.3)

Рис.2.3 – Отсортированная таблица «Отдел кадров»

·
Поиск информации с помощью автофильтра (получить информацию о мужчинах, имя которых начинается на букву Буква, отчество – «Иванович», с окладом Оклад );

Рис.2.4 - Автофильтр

· Поиск информации с помощью расширенного фильтра (найти информацию из отдела Отдел1 в возрасте Возраст1 и Возраст2 , и о женщинах из отдела Отдел2 в возрасте Возраст3 );

1) Вводим критерии для расширенного фильтра 1

В итоге получаем (Рис.2.5)

Рис.2.5 – Расширенный фильтр 1

2) Вводим критерии для расширенного фильтра 2.

В итоге получаем(Рис.2.6)

Рис.2.6 – Расширенный фильтр 2

· Подведение итогов (определить количество и средний возраст сотрудников в каждом отделе);

Рис.2.7 - Итоги

Функция ДМИН- Возвращает наименьшее число в поле (столбце) записей списка или базы данных, которое удовлетворяет заданным условиям.

Рис.2.8 – Анализ списка с помощью функции ДМИН

Задание 3.

Создаём две связанные таблицы Сессия (рис.3.2) и Студенты (рис.3.4)

Рис.3.1- Конструктор таблицы Сессия

Рис.3.2- Таблица Сессия

Рис.3.3 – Конструктор таблицы Студенты


Рис.3.4 – Таблица Студенты

1) Используя таблицу Студенты, создать три запроса, по которым из базы данных будут поочередно отобраны фамилии и имена студентов групп 1-Э-1, 1-Э-2, 1-Э-3.

Рис.3.5– Конструктор Запроса 1.1


Рис.3.7– Конструктор Запроса1.2

Рис.3.9– Конструктор Запроса 1.3

2) Используя таблицу Студенты, создать два запроса, по которым из базы данных будут поочередно отобраны фамилии и имена женщин, а затем фамилии и имена мужчин.

Рис.3.11– Конструктор Запроса 2.1

Рис.3.13 – Конструктор Запроса 2.2

3)Использую таблицу Студенты, создать два запроса, по которым из базы данных будут поочередно отобраны фамилии и имена женщин группы 1-Э-2, а затем-мужчин группы 1-Э-1.

Рис.3.15– Конструктор Запроса 3.1

Рис.3.17– Конструктор – 3.2

4) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток и оценки по математике студентов группы 1-Э-2.

Рис.3.19– Конструктор Запроса 5

5) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток и оценки по философии студентов (мужчин) группы 1-Э-2.

Рис.3.21– Конструктор Запроса 8

6) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «удовлетворительно» (3) по философии.

Рис.3.23– Конструктор Запроса 10

7) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «хорошо» (4) одновременно по двум предмета: философии и математике.

Рис.3.25– Конструктор Запроса 14

8) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «неудовлетворительно» (2) по одному из двух предметов: по математике или информатике.

Рис.3.27– Конструктор Запроса 18

9) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «хорошо» (4) по всем предметам.

Рис.3.29– Конструктор Запроса 22

10) Используя таблицу Сессия, создать запрос с именем Средний балл для расчёта среднего балла каждого студента по результатам сдачи четырёх экзаменов. Запрос обязательно должен содержать поле Зачётка , которое впоследствии будет использовано для связывания нескольких таблиц.

Рис.3.31 – Конструктор таблицы Сессия

11) Используя связанные таблицы Студенты , Сессия и запрос Средний балл , создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток, номера групп студентов, имеющих средний балл 3,25.

Рис.3.33 – Конструктор Запроса 25

12) Используя связанные таблицы Студенты , Сессия и запрос Средний балл , создать запрос, по которому из базы данных будут отобраны оценка по математике, средний балл и номер группы студента Иванова.

Рис.3.35– Конструктор Запроса 29

13) Используя связанные таблицы Студенты , Сессия и запрос Средний балл , создать запрос, по которому из базы данных будут отобраны фамилии, имена студентов имеющих средний балл менее 3,75.

Рис.3.37– Конструктор Запроса 33

14) Используя таблицу Студенты , определить фамилию, имя и номер зачетки студентки, если известно, что её отчество Викторовна.

Рис.3.39– Конструктор Запроса 35

Задание 4.

Для перевода числа из десятичной системы счисления в систему счисления с другим основанием поступают следующим образом:

а) Для перевода целой части числа его делят нацело на основание системы, фиксируя остаток. Если неполное частное не равно нулю продолжают делить его нацело. Если равно нулю остатки записываются в обратном порядке.

б) Для перевода дробной части числа ее умножают на основание системы счисления, фиксируя при этом целые части полученных произведений. Целые части в дальнейшем умножении не участвуют. Умножение производиться до получения 0 в дробной части произведения или до заданной точности вычисления.

в) Ответ записывают в виде сложения переведенной целой и переведенной дробной части числа.

49812,22₁₀ = 1100001010010100,001₂ 49812,22₁₀ = 141224,160₈

0,
0,

49812,22₁₀ = С294, 385₁₆

0,

Задание 5.

Для перевода числа в десятичную систему счисления из системы счисления с другим основанием каждый коэффициент переводимого числа умножается на основание системы в степени соответствующей этому коэффициенту и полученные результаты складываются.

А) 10101001,11001₂ = 1*2^7+1*2^5+1*2^3+1*2^0+1*2^(-1)+1*2^(-2)+1*2(-5)= 169,78125₁₀

Для перевода из двоичной системы счисления в восьмеричную необходимо разбить данное двоичное число вправо и влево от запятой на триада (три цифры) и представить каждую триаду соответствующим восьмеричным кодом. При невозможности разбиения на триады допускается добавление нулей слева в целой записи числа и справа в дробной части числа. Для обратного перевода каждую цифру восьмеричного числа представляют соответствующей триадой двоичного кода.

Таблица 5.1 – Перевод чисел

Десятичная система счисления Двоичная система счисления Восьмеричная система счисления Шестнадцатеричная система счисления
Триады (0-7) Тетрады (0-15)
A
B
C
D
E
F

Б) 674,7₈ = 110111100,111₂=1*2^2+1*2^3+1*2^4+1*2^5+1*2^7+1*2^8+1*2^(-1) +1*2^(-2) +1*2^(-3)= 443,875₁₀

110 111 100. 111₂

В) EDF,51₁₆ = 111011011111,01010001₂=1*2^0+1*2^1+1*2^2+1*2^3+1*2^4+1*2^6+ +1*2^7+1*2^9+ +1*2^10+1*2^11+1*2^(-2) 1*2^(-4) 1*2^(-8)= 3807,31640625₁₀

1110 1101 1111 . 0101 0001₂

Задание 6.

В основе сложения чисел в двоичной системе лежит таблица сложения одноразрядных двоичных чисел.

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10
Сложение многоразрядных двоичных чисел осуществляется в соответствии с этой таблицей с учетом возможных переносов из младшего разряда в старшие. В восьмеричной системе счисления, как и в любой другой позиционной, действуют собственные правила сложения чисел, представляющиеся правилами сложения цифр с равными порядками, относящихся к двум складываемым числам. Эти правила видны из табл.6.1. Появляющийся при сложении некоторых цифр данного разряда перенос, показан символом "↶".
Таблица 6.1 - Сложение в 8–ой системе счисления
+
↶0
↶0 ↶1
↶0 ↶1 ↶2
↶0 ↶1 ↶2 ↶3
↶0 ↶1 ↶2 ↶3 ↶4
↶0 ↶1 ↶2 ↶3 ↶4 ↶5
↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6

Правила сложения цифр двух шестнадцатеричных чисел, находящихся в одинаковых разрядах этих чисел, можно видеть из табл.6.2. Имеющий место при сложении некоторых цифр данного разряда перенос показан символом "↶".

6 8 5 , 3 2 2 A ₁₆ + 1 0 1 0 1 0 0 1 0 , 1 0 ₂ + 4 7 7 , 6₈

D A 4 8 5 , 4 4 6 0 ₁₆ 1 1 0 0 0 0 1 1 0 , 1 1 0 1 0₂6 5 1 , 5 6₈

D A B 0 A , 7 6 8 A₁₆ 1 0 1 1 0 1 1 0 0 1 , 0 1 0 1 0₂ 1 3 5 1 ,3 6₈

Таблица 6.2 - Сложение в 16-ой системе счисления

+ A B C D E F
A B C D E F
A B C D E F ↶0
A B C D E F ↶0 ↶1
A B C D E F ↶0 ↶1 ↶2
A B C D E F ↶0 ↶1 ↶2 ↶3
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8
A A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9
B B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A
C C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B
D D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B ↶C
E E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B ↶C ↶D
F F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B ↶C ↶D ↶E

Задание 7.

Используя таблицу сложения восьмеричных чисел, можно выполнять их вычитание. Пусть требуется вычислить разность двух восьмеричных чисел. Найдём в первом столбце табл. 6.1 цифру, соответствующую последней в вычитаемом, и в её строке отыщем последнюю цифру уменьшаемого - она расположена на пересечении строки вычитаемого и столбца разности. Так мы найдём последнюю цифру разности. Аналогично ищется каждая цифра разности.

а) _ 2 5 1 5 1 4 , 4 0₈

5 4 2 5 , 5 5

2 4 3 0 6 6 , 6 3₈

б) _1 0 1 1 0 1 1 0 0 0 , 1 0 0 0 0₂

1 0 1 0 0 1 0 0 1 , 1 0 0 1 1

1 0 1 1 0 0 1 0 0 1 1 , 0 0 0 0 1₂

в) _E 3 1 6 , 2 5 0₁₆

5 8 8 1 , F D C₁₆

8 А 9 4 , 2 7 4

Задание 8.

В основе умножения чисел в двоичной системе лежит таблица умножения одноразрядных двоичных чисел.

0 · 0 = 0
0 · 1 = 0
1 · 0 = 0
1 · 1 = 1

Умножение многоразрядных двоичных чисел осуществляется в
соответствии с этой таблицей по обычной схеме,
которую вы применяете в десятичной системе.

Собственная таблица умножения, как у нас уже была возможность убедиться, имеется в каждой позиционной системе счисления. В двоичной она самая маленькая, в восьмеричной (табл.8.1) и десятичной уже более обширная. Среди часто используемых систем счисления из рассмотренных нами самой крупной таблицей умножения располагает шестнадцатеричная (табл. 8.2).

Табл. 8.1. – Умножение в 8-ой системе

×

а) 1 0 1 0 0 1₂

* 1 1 1 0 1 1

1 0 1 0 0 1 .

1 0 0 1 0 1 1 1 0 0 1 1₂

б) 1 0 1 1 1 0 0₂

* 1 1 0 1 1

1 0 1 1 1 0 0 .

1 0 0 1 1 0 1 1 0 1 0 0₂

в) B C D , 5₁₆

* D5A ₁₆

9 D 9 3 3 E 2₁₆


Табл.8.2 – Умножение в 16-ой системе

× A B C D E F
A B C D E F
A C E 1A 1C 1E
C F 1B 1E 2A 2D
C 1C 2C 3C
A F 1E 2D 3C 4B
C 1E 2A 3C 4E 5A
E 1C 2A 3F 4D 5B
1B 2D 3F 5A 6C 7E
A A 1E 3C 5A 6E 8C
B B 2C 4D 6E 8F 9A A5
C C 3C 6C 9C A8 B4
D D 1A 4E 5B 8F 9C A9 B6 C3
E E 1C 2A 7E 8C 9A A8 B6 C4 D2
F F 1E 2D 3C 4B 5A A5 B4 C3 D2 E1

Задание 9.

Прямой код - способ представления двоичных чисел с фиксированной запятой в компьютерной арифметике. При записи числа в прямом коде старший разряд является знаковым разрядом . Если его значение равно 0 - то число положительное, если 1 - то отрицательное.

Обратный код - метод вычислительной математики, позволяющий вычесть одно число из другого, используя только операцию сложения над натуральными числами. При записи числа для положительного числа совпадает с прямым кодом, а для отрицательного числа все цифры заменяются на противоположные, кроме разрядного.

Дополнительный код (англ. two’s complement , иногда twos-complement ) - наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ. При записи числа для положительного числа совпадает с прямым кодом, а для отрицательного числа дополнительный код обуславливается получением обратного кода и добавлением 1.

Сложение чисел в дополнительном коде возникающая 1 переноса в знаковом разряде отбрасывается, а в обратном коде прибавляется к младшему разряду суммы кодов.

Если результат арифметических действий является кодом отрицательного числа необходимо преобразовать в прямой код. Обратный код преобразовать в прямой заменой цифр во всех разрядах кроме знакового на противоположных. Дополнительный код преобразовывается в прямой прибавлением 1.

Прямой код:

X=0,10111 1,11110

Y=1,11110 0,10111

Обратный код:

X=0,10111 0,10111

Y=1,00001 1,00001

1,11000 1,00111

Дополнительный код:

X=0,10111 0,10111

Y=1,00010 1,00010

1,11001 1,00110

Прямой код:

Обратный код:

X=0,110110 0,0110110

Y=0,101110 0,0101110

Дополнительный код:

X=0,110110 0,0110110

Y=0,101110 0,0101110

Задание 10.

Логические элементы

1. Логический элемент НЕ выполняет логическое отрицание. Он имеет один вход и один выход. Отсутствие сигнала (напряжения) обозначим через «0», а наличие сигнала через «1». Сигнал на выходе всегда противоположен входному сигналу. Это видно из таблицы истинности, которая показывает зависимость выходного сигнала от входного.

2. Логический элемент ИЛИ выполняет логическое сложение. Он имеет несколько входов и один выход. Сигнал на выходе будет, если есть сигнал хотя бы на одном входе.

Условное обозначение Таблица истинности

3. Логический элемент И выполняет логическое умножение. Сигнал на выходе этого логического элемента будет только в том случае, если есть сигнал на всех входах.

Условное обозначение Таблица истинности

F=(A v B) ʌ (C v D)

Таблица 10.1 – Таблица истинности

A B C D A B C D (A v B) (C vD) F=(A v B) ʌ (C v D)

AВ алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений. Приведем соотношения, отражающие эти законы.

1. Закон двойного отрицания: (А) = А

Двойное отрицание исключает отрицание.

2. Переместительный (коммутативный) закон:

Для логического сложения: A V B = B V A

Для логического умножения: A&B = B&A

Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

3. Сочетательный (ассоциативный) закон:

Для логического сложения: (A v B) v C = A v (Bv C);

Для логического умножения: (A&B)&C = A&(B&C).

При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

4. Распределительный (дистрибутивный) закон:

Для логического сложения: (A v B)&C = (A&C)v(B&C);

Для логического умножения: (A&B) v C = (A v C)&(B v C).

Определяет правило выноса общего высказывания за скобку.

5. Закон общей инверсии (законы де Моргана):

Для логического сложения: (Av B) = A & B;

Для логического умножения: (A& B) = A v B;

6. Закон идемпотентности

Для логического сложения: A v A = A;

Для логического умножения: A&A = A.

Закон означает отсутствие показателей степени.

7. Законы исключения констант:

Для логического сложения: A v 1 = 1, A v 0 = A;

Для логического умножения: A&1 = A, A&0 = 0.

8. Закон противоречия: A& A = 0.

Невозможно, чтобы противоречащие высказывания были одновременно истинными.

9. Закон исключения третьего: A v A = 1.

10. Закон поглощения:

Для логического сложения: A v (A&B) = A;

Для логического умножения: A&(A v B) = A.

11. Закон исключения (склеивания):

Для логического сложения: (A&B) v (A &B) = B;

Для логического умножения: (A v B)&(A v B) = B.

12. Закон контрапозиции (правило перевертывания):

(A v B) = (Bv A).

(А→В) = А&В

А&(АvВ)= А&В

Формула имеет нормальную форму, если в ней отсутствуют знаки эквивалентности, импликации, двойного от­рицания, при этом знаки отрицания находятся только при переменных.


Похожая информация.



© 2024
zane-host.ru - Программы. Компьютеры. Сетевое оборудование. Оргтехника