20.08.2023

Как работает процессор на физическом уровне. Что такое процессор компьютера? Алгоритм работы современного процессора


Компьютера. Начнем с того, чем отличаются процессоры?

Различные процессоры могут иметь отличающийся набор команд, которые они могут исполнять. Чем больше команд может исполнять процессор, тем быстрее он обрабатывает информацию.Если же система команд более «бедная», то такой процессор должен делать бОльшее число более простых операций, чтобы выполнить обработку данных, по сравнению с процессором с более «богатой» системой команд.

Процессоры, у которых система команд отличается в большую сторону от остальных, называют процессорами с расширенной системой команд.

Важно понимать, что процессор является совершенно «бездушным» механизмом, который совершенно не отдает себе отчета в том, что он делает. Процессор выполняет свою работу шаг за шагом, обрабатывает команду за командой, и он абсолютно «не видит» связи между этими шагами и командами.

Если следующая команда отменяет предыдущую (к примеру, первая команда позволяет записать данные в регистр, а вторая команда удаляет данные из этого же регистра), то процессор будет выполнять такие команды, нисколько «не задумываясь» над бессмысленностью своих действий.

Или, например, если программа будет написана неправильно, и не будет иметь конца, то процессор будет ее обрабатывать непрерывно, и никогда сам не «примет решения» о прекращении работы. Остановить такую “зацикленную” программу можно только путем вмешательства извне.

Еще хуже, если программа будет направлена не на созидание (обработку данных), а на разрушение (например, на удаление важных и нужных данных, или на выгрузку этих данных несанкционированным образом), то процессор безупречно и без всяких «угрызений совести» в точности выполнит все инструкции на уничтожение или кражу важных данных.


Этим пользуются разработчики . Создавая программы, направленные на выполнение несанкционированных действий (удаление или банальное воровство данных, внесение помех в обработку данных и т.п.), разработчики вирусов стремятся к тому, чтобы их программы были записаны в оперативную память компьютера, и чтобы процессору был дан сигнал на обработку записанной в памяти последовательности команд.

В этом состоит их главная задача: обойти все виды контроля перед помещением программы в оперативную память. Остальное доделает процессор, выполнив все команды злоумышленников.

Наиболее просто попасть в оперативную память могут вирусы, записанные .exe, так как в них хранится набор команд практически пригодный без особой предварительной обработки или анализа для выполнения процессором.

Тогда как команды из других типов файлов требуется предварительно обработать специальными программами, соответственно, при обработке можно выявить факт наличия вирусов и вредоносных программ. А.exe файлы можно сразу записать в память и отправить на обработку процессором, не распознав в них вирусов.

Именно поэтому разработчики вирусов так любят формат.exe файлов, а разработчики антивирусных программ, наоборот, не любят эти файлы и проверяют их самым тщательным образом.

Следует всегда помнить, что допуская выполнение.exe файлов, полученных из непроверенных источников, мы открываем доступ к самому сердцу нашего компьютера, к процессору , и позволяем ему делать то, что может навредить компьютеру и нашим данным, которые мы ему доверили. И тогда процессор из нашего помощника превратится в саморазрушителя.

В заключение следует отметить, что процессор выдерживает высокие нагрузки, может постоянно работать на полную мощность и непрерывно, если при этом работает система его охлаждения. Очень важно, чтобы эта система была исправна, иначе процессор может выйти из строя

В принципе, ничего другого с процессором произойти не может, устроен он достаточно надежно, если, конечно, по нему не стучать молотком, проверяя на прочность! Однако если процессор выйдет из строя из-за перегрева, то его отремонтировать невозможно в силу конструктивных особенностей. Неисправный процессор можно только заменить на другой, новый и исправный.

Поэтому в ПК имеются системы безопасности, автоматически отключающие электрическое питание компьютера, если температура процессора поднимается до предельной величины или выше нее. Такое аварийное выключение, как правило, происходит внезапно и без какого-либо предупреждения: щелк и ПК выключился.

Тогда как при других неисправностях могут выдаваться, например, предупреждения на экран монитора или в виде звуковых сигналов. Компьютер не удастся включить до тех пор, пока процессор не остынет до приемлемой температуры.

Если компьютер начал автоматически отключаться из-за перегрева процессора, то лучше всего отправить такой компьютер в ремонт для очистки от пыли, мешающей системе охлаждения поддерживать заданную температуру процессора.

Без исправного процессора – нет ПК. Процессор – это своего рода мозг компьютера, делающий его способным к обработке информации, что и обеспечивает выполнение компьютером всех возложенных на него задач.

P.S. Статья закончилась, но можно еще прочитать:

Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик .
Уже более 3.000 подписчиков

.

«Дареному процессору в кулер не дуют.»

Важность процессора для любого персонального компьютера трудно переоценить. Это электронное устройство сравнительно мало по размерам, но потребляет значительный процент энергии, получаемой от блока питания, а его стоимость составляет львиную долю стоимости компьютера. Не случайно многие люди, обычно не очень сведущие в компьютерной терминологии, ассоциируют процессор с самим компьютером. Хотя это, конечно же, ошибочная точка зрения, но причины подобной ассоциации нетрудно понять. Ведь процессор вполне можно уподобить мозгу компьютера, и в таком случае он будет олицетворять суть компьютера, и идентифицировать его точно так же, как мозг человека олицетворяет суть человека и идентифицирует его личность.

Следует сразу оговориться, что в этой статье будет рассказано в основном о центральном процессоре компьютера, так называемом CPU (Central Processing Unit), между тем, как к процессорам относятся и многие вспомогательные чипы, расположенные в компьютере, как, например, процессор видеокарты или звуковой карты. Тем не менее, принципы работы, характерные для CPU, во многом справедливы и для других типов чипов.

Первые процессоры появились на самой заре зарождения компьютерных технологий. А бурное развитие микрокомпьютерной техники во многом являлось следствием появления первых микропроцессоров. Если раньше все необходимые элементы CPU были расположены на различных электронных схемах, то в микропроцессорах они впервые были объединены на одном-единственном кристалле. В дальнейшем под термином «процессор» мы будем иметь в виду именно микропроцессоры, поскольку эти слова давно превратились в синонимы.

Микропроцессор i4004 - прадедушка сегодняшних CPU

Одним из первых микропроцессоров был четырехразрядный процессор фирмы Intel i4004. Он имел смехотворные по нынешним временам характеристики, но для своего времени – начала 1970-x гг., его появление представляло собой настоящий технологический прорыв. Как можно догадаться из его обозначения, он был четырехразрядным и имел тактовую частоту около 0,1 МГц. И именно его прямой потомок, процессор i8088, был выбран фирмой IBM в качестве «мозга» первого персонального компьютера фирмы IBM PC.

Процессор i8088 использовавшийся в первом персональном компьютере фирмы IBM

Шли годы, характеристики CPU становились все более серьезными и внушительными, и, как следствие, становились все более солидными характеристики персональных компьютеров. Значительной вехой в развитии микропроцессоров стал i80386. Это был первый полностью 32-разрядный CPU, который мог адресовать к 4 ГБ оперативной памяти, в то время как большинство его предшественников могло работать максимум с 640 КБ ОЗУ. Подобная разрядность микропроцессоров настольных компьютеров продержалась довольно долго, почти два десятилетия. В середине 80-х объем ОЗУ в 4 ГБ казался фантастически огромным, но сейчас его можно считать небольшим для серьезного компьютера.

i80386 - первый полностью 32-разрядный CPU

Следующий микропроцессор компании Intel, 486DX, замечателен тем, что в нем впервые появился внутренний кэш – внутренняя оперативная память микропроцессора. Кроме того, в нем было применено много других усовершенствований, которые во многом определили дальнейшую эволюцию микропроцессоров. То же самое можно сказать и про следующий процессор компании Intel, Pentium.

Intel 486DX - первый процессор с внутренним кэшем

Процессор компании Intel - Pentium

Вместе с CPU Pentium 4 в ряду технологий, использующихся в микропроцессорах, появилась . А процессоры Opteron от фирмы AMD и Pentium D от Intel открыли современную эпоху эволюции CPU, эпоху процессоров, имеющих несколько ядер. Сейчас на рынке представлено много CPU от различных производителей, но главными производителями до сих пор остаются две компании – Intel и AMD, причем на долю первой приходится более 80% рынка.

CPU Opteron от фирмы AMD и Pentium D от Intel

Устройство CPU

Любой CPU имеет вычислительное ядро (иногда их бывает несколько), а также кэш, то есть собственную оперативную память. Кэш обычно имеет два уровня – первый и второй (внутренний и внешний). Внутренний имеет меньший объем, но обладает большим быстродействием по сравнению с внешним. Емкость кэша второго уровня современных CPU составляет несколько мегабайт – больше, чем оперативная память первых персональных компьютеров!

В ядре CPU находится несколько функциональных блоков – блок управления, блок выборки инструкций, блок вычислений с плавающей точкой, блок целочисленных вычислений, и.т.д. Также в ядре располагаются главные регистры processor-а, в которых находятся обрабатываемые в определенный момент данные. В классической схеме микропроцессора архитектуры х86 этих регистров всего 16.

На сегодняшний день наибольшее распространение получили две основные разновидности процессоров – CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). В CISC-процессорах мало внутренних регистров, но они поддерживают большой набор команд. В RISC-процессорах регистров много, зато набор команд ограничен. Традиционно микропроцессоры для персональных компьютеров архитектуры Intel х86 принадлежали к классу CISC-процессоров, однако в настоящее время большинство микропроцессоров представляют собой гибрид этих двух архитектур.

Если рассмотреть CPU на аппаратном уровне, то он является, по сути, огромной микросхемой, расположенной на цельном кристалле кремния, в которой содержатся миллионы, а то и миллиарды транзисторов. Чем меньше размеры транзисторов, тем больше их содержится на единицу площади CPU, и тем больше его вычислительная мощность. Кроме того, от размеров транзисторов зависит энерговыделение и энергопотребление процессора - чем меньше их размер, тем эти характеристики процессора меньше. Этот фактор немаловажен, так как CPU является наиболее энергоемким устройством современного ПК. Поэтому проблема уменьшения нагрева процессора входит в число самых важных, стоящих перед разработчиками ПК и самих процессоров.

Отдельно стоит сказать о корпусе, в котором находится CPU. Обычно материалом корпуса процессора служит керамика или пластик. Первоначально процессоры намертво впаивались в системную плату, сейчас же большинство вставляются в специальные гнезда – сокеты. Такой подход заметно упростил модернизацию системы пользователем – достаточно вставить в разъем другой CPU, поддерживаемый данной системной платой, и вы получите более мощный компьютер.

Сокет современного процессора

С другими устройствами процессор связан при помощи специальных каналов связи ­(шин) – шины памяти, шины данных и шины адреса. Разрядность последней очень важна, поскольку от этого параметра зависит объем доступной CPU, а значит, и программам, оперативной памяти.

Принцип работы

Для обработки данных управляющее устройство CPU получает из оперативной памяти или кэша процессора сами данные, а также команды, которые описывают процесс обработки данных. Данные помещаются во внутренние регистры микропроцессора, и над ними производятся операции при помощи арифметико-логического устройства в соответствии с поступившими командами.

Принцип работы процессора

Работу CPU синхронизируют так называемые тактовые сигналы. Наверняка каждому пользователю известно понятие тактовой частоты, которая отражает количество тактов работы процессора за секунду. Это значение во многом определят характеристики процессора. Тем не менее, производительность компьютера далеко не всегда пропорциональна его тактовой частоте. И дело тут не только в наличии у современных CPU нескольких ядер, а и в том, что разные процессоры имеют разную архитектуру и, как следствие, могут выполнять разное количество операций за секунду. Современные CPU могут выполнять несколько операций за один такт, тогда как у первых микропроцессоров на одну операцию, наоборот, могло уходить несколько тактов.

CPU архитектуры х86 исторически поддерживают следующие режимы работы процессора:

  1. Реальный
  2. Защищенный
  3. Виртуальный
  4. Режим супервизора

Реальный режим работы был единственным режимом, в котором работали все CPU до i80386. В этом режиме processor мог адресовать лишь 640 КБ ОЗУ. В результате появления защищенного режима процессор получил возможность работать с большими объемами оперативной памяти. Также существует разновидность защищенного режима – виртуальный режим, предназначенный для совместимости со старыми программами, написанными для процессоров 8086.

Режимы работы процессора также включают режим супервизора, который используется при работе в современных операционных системах. В этом режиме программный код имеет неограниченный доступ ко всем системным ресурсам.

Заключение

В этой статье вы в общих чертах познакомились с назначением центрального CPU, его историей, устройством, узнали про режимы работы процессора и ознакомились с принципами его функционирования. Central Processing Unit – это самое сложное и наиболее важное устройство компьютера. Можно смело утверждать, что развитие компьютерной техники во многом взаимосвязано с прогрессом в развитии CPU. От мощности микропроцессора и его особенностей его работы зависит производительность всего компьютера, а также возможности его отдельных компонентов.

Инструмент проще, чем машина. Зачастую инструментом работают руками, а машину приводит в действие паровая сила или животное.

Чарльз Бэббидж

Компьютер тоже можно назвать машиной, только вместо паровой силы здесь электричество. Но программирование сделало компьютер таким же простым, как любой инструмент.

Процессор - это сердце/мозг любого компьютера. Его основное назначение - арифметические и логические операции, и прежде чем погрузиться в дебри процессора, нужно разобраться в его основных компонентах и принципах их работы.

Два основных компонента процессора

Устройство управления

Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент - арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.

Существует два типа реализации УУ:

  • УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением - устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
  • УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.

УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.

Арифметико-логическое устройство

Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.

Большинство логических элементов имеют два входа и один выход.

Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S - выходом, C - переносом (в старший разряд).

Схема арифметического полусумматора

Хранение информации - регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр - минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set - Сброс/Установка).
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Принцип действия RS-триггера

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) - это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Прим. перев. Оперативная память бывает статической и динамической - SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической - конденсаторы. SRAM быстрее, а DRAM дешевле.

Команды (инструкции)

Команды - это фактические действия, которые компьютер должен выполнять. Они бывают нескольких типов:

  • Арифметические : сложение, вычитание, умножение и т. д.
  • Логические : И (логическое умножение/конъюнкция), ИЛИ (логическое суммирование/дизъюнкция), отрицание и т. д.
  • Информационные : move , input , outptut , load и store .
  • Команды перехода : goto , if ... goto , call и return .
  • Команда останова : halt .

Прим. перев. На самом деле все арифметические операции в АЛУ могут быть созданы на основе всего двух: сложение и сдвиг. Однако чем больше базовых операций поддерживает АЛУ, тем оно быстрее.

Инструкции предоставляются компьютеру на языке ассемблера или генерируются компилятором высокоуровневых языков.

В процессоре инструкции реализуются на аппаратном уровне. За один такт одноядерный процессор может выполнить одну элементарную (базовую) инструкцию.

Группу инструкций принято называть набором команд (англ. instruction set).

Тактирование процессора

Быстродействие компьютера определяется тактовой частотой его процессора. Тактовая частота - количество тактов (соответственно и исполняемых команд) за секунду.

Частота нынешних процессоров измеряется в ГГц (Гигагерцы). 1 ГГц = 10⁹ Гц - миллиард операций в секунду.

Чтобы уменьшить время выполнения программы, нужно либо оптимизировать (уменьшить) её, либо увеличить тактовую частоту. У части процессоров есть возможность увеличить частоту (разогнать процессор), однако такие действия физически влияют на процессор и нередко вызывают перегрев и выход из строя.

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. LOAD_A 8 . Это команда сохраняет в ОЗУ данные, скажем, <1100 1000> . Первые 4 бита - код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A - поместить данные 1000 (последние 4 бита команды) в регистр A .
  2. LOAD_B 2 . Ситуация, аналогичная прошлой. Здесь помещается число 2 (0010) в регистр B .
  3. ADD B A . Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A .
  4. STORE_A 23 . Сохраняем значение регистра A в ячейку памяти с адресом 23 .

Вот такие операции нужны, чтобы сложить два числа.

Шина

Все данные между процессором, регистрами, памятью и I/O-устройствами (устройствами ввода-вывода) передаются по шинам. Чтобы загрузить в память только что обработанные данные, процессор помещает адрес в шину адреса и данные в шину данных. Потом нужно дать разрешение на запись на шине управления.

Кэш

У процессора есть механизм сохранения инструкций в кэш. Как мы выяснили ранее, за секунду процессор может выполнить миллиарды инструкций. Поэтому если бы каждая инструкция хранилась в ОЗУ, то её изъятие оттуда занимало бы больше времени, чем её обработка. Поэтому для ускорения работы процессор хранит часть инструкций и данных в кэше.

Если данные в кэше и памяти не совпадают, то они помечаются грязными битами (англ. dirty bit).

Поток инструкций

Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.

Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.

Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.

Устройство и принцип работы процессора

Процессор – это основное устройство ЭВМ, выполняющее логические и арифметические операции, и осуществляющее управление всеми компонентами ЭВМ. Процессор представляет собой миниатюрную тонкую кремниевую пластинку прямоугольной формы, на которой размещается огромное количество транзисторов, реализующих все функции, выполняемые процессором. Кремневая пластинка – очень хрупкая, а так как ее любое повреждение приведет к выходу из строя процессора, то она помещается в пластиковый или керамический корпус.

1. Введение.

Современный процессор – это сложное и высокотехнологическое устройство, включающее в себя все самые последние достижения в области вычислительной техники и сопутствующих областей науки.

Большинство современных процессоров состоит из:

  • одного или нескольких ядер, осуществляющих выполнение всех инструкций;
  • нескольких уровней КЭШ-памяти (обычно, 2 или три уровня), ускоряющих взаимодействие процессора с ОЗУ;
  • контроллера ОЗУ;
  • контроллера системной шины (DMI, QPI, HT и т.д.);

И характеризуется следующими параметрами:

  • типом микроархитектуры;
  • тактовой частотой;
  • набором выполняемых команд;
  • количеством уровней КЭШ-памяти и их объемом;
  • типом и скоростью системной шины;
  • размерами обрабатываемых слов;
  • наличием или отсутствием встроенного контроллера памяти;
  • типом поддерживаемой оперативной памяти;
  • объемом адресуемой памяти;
  • наличием или отсутствием встроенного графического ядра;
  • энергопотреблением.

Упрощенная структурная схема современного многоядерного процессора представлена на рисунке 1.

Начнем обзор устройства процессора с его основной части – ядра.

2. Ядро процессора.

Ядро процессора – это его основная часть, содержащая все функциональные блоки и осуществляющая выполнение всех логических и арифметических операций.

На рисунке 1 приведена структурная схема устройства ядра процессора. Как видно на рисунке, каждое ядро процессора состоит из нескольких функциональных блоков:

  • блока выборки инструкций;
  • блоков декодирования инструкций;
  • блоков выборки данных;
  • управляющего блока;
  • блоков выполнения инструкций;
  • блоков сохранения результатов;
  • блока работы с прерываниями;
  • ПЗУ, содержащего микрокод;
  • набора регистров;
  • счетчика команд.

Блок выборки инструкций осуществляет считывание инструкций по адресу, указанному в счетчике команд. Обычно, за такт он считывает несколько инструкций. Количество считываемых инструкций обусловлено количеством блоков декодирования, так как необходимо на каждом такте работы максимально загрузить блоки декодирования. Для того чтобы блок выборки инструкций работал оптимально, в ядре процессора имеется предсказатель переходов.

Предсказатель переходов пытается определить, какая последовательность команд будет выполняться после совершения перехода. Это необходимо, чтобы после условного перехода максимально нагрузить конвейер ядра процессора.

Блоки декодирования , как понятно из названия, – это блоки, которые занимаются декодированием инструкций, т.е. определяют, что надо сделать процессору, и какие дополнительные данные нужны для выполнения инструкции. Задача эта для большинства современных коммерческих процессоров, построенных на базе концепции CISC, – очень сложная. Дело в том, что длина инструкций и количество операндов – нефиксированные, и это сильно усложняет жизнь разработчикам процессоров и делает процесс декодирования нетривиальной задачей.

Часто отдельные сложные команды приходится заменять микрокодом – серией простых инструкций, в совокупности выполняющих то же действие, что и одна сложная инструкция. Набор микрокода прошит в ПЗУ, встроенном в процессоре. К тому же микрокод упрощает разработку процессора, так как отпадает надобность в создании сложноустроенных блоков ядра для выполнения отдельных команд, да и исправить микрокод гораздо проще, чем устранить ошибку в функционировании блока.

В современных процессорах, обычно, бывает 2-4 блока декодирования инструкций, например, в процессорах Intel Core 2 каждое ядро содержит по два таких блока.

Блоки выборки данных осуществляют выборку данных из КЭШ-памяти или ОЗУ, необходимых для выполнения текущих инструкций. Обычно, каждое процессорное ядро содержит несколько блоков выборки данных. Например, в процессорах Intel Core используется по два блока выборки данных для каждого ядра.

Управляющий блок на основании декодированных инструкций управляет работой блоков выполнения инструкций, распределяет нагрузку между ними, обеспечивает своевременное и верное выполнение инструкций. Это один из наиболее важных блоков ядра процессора.

Блоки выполнения инструкций включают в себя несколько разнотипных блоков:

ALU – арифметическое логическое устройство;

FPU – устройство по выполнению операций с плавающей точкой;

Блоки для обработки расширения наборов инструкций. Дополнительные инструкции используются для ускорения обработки потоков данных, шифрования и дешифрования, кодирования видео и так далее. Для этого в ядро процессора вводят дополнительные регистры и наборы логики. На данный момент наиболее популярными расширениями наборов инструкция являются:

MMX (Multimedia Extensions) – набор инструкций, разработанный компанией Intel, для ускорения кодирования и декодирования потоковых аудио и видео-данных;

SSE (Streaming SIMD Extensions) – набор инструкций, разработанный компанией Intel, для выполнения одной и той же последовательности операций над множеством данных с распараллеливанием вычислительного процесса. Наборы команд постоянно совершенствуются, и на данный момент имеются ревизии: SSE, SSE2, SSE3, SSSE3, SSE4;

ATA (Application Targeted Accelerator) – набор инструкций, разработанный компанией Intel, для ускорения работы специализированного программного обеспечения и снижения энергопотребления при работе с такими программами. Эти инструкции могут использоваться, например, при расчете контрольных сумм или поиска данных;

3DNow – набор инструкций, разработанный компанией AMD, для расширения возможностей набора инструкций MMX;

AES (Advanced Encryption Standard) – набор инструкций, разработанный компанией Intel, для ускорения работы приложений, использующих шифрование данных по одноименному алгоритму.

Блок сохранения результатов обеспечивает запись результата выполнения инструкции в ОЗУ по адресу, указанному в обрабатываемой инструкции.

Блок работы с прерываниями. Работа с прерываниями – одна из важнейших задач процессора, позволяющая ему своевременно реагировать на события, прерывать ход работы программы и выполнять требуемые от него действия. Благодаря наличию прерываний, процессор способен к псевдопараллельной работе, т.е. к, так называемой, многозадачности.

Обработка прерываний происходит следующим образом. Процессор перед началом каждого цикла работы проверяет наличие запроса на прерывание. Если есть прерывание для обработки, процессор сохраняет в стек адрес инструкции, которую он должен был выполнить, и данные, полученные после выполнения последней инструкции, и переходит к выполнению функции обработки прерывания.

После окончания выполнения функции обработки прерывания, из стека считываются сохраненные в него данные, и процессор возобновляет выполнение восстановленной задачи.

Регистры – сверхбыстрая оперативная память (доступ к регистрам в несколько раз быстрее доступа к КЭШ-памяти) небольшого объема (несколько сотен байт), входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций. Регистры процессора делятся на два типа: регистры общего назначения и специальные регистры.

Регистры общего назначения используются при выполнении арифметических и логических операций, или специфических операций дополнительных наборов инструкций (MMX, SSE и т.д.).

Регистры специального назначения содержат системные данные, необходимые для работы процессора. К таким регистрам относятся, например, регистры управления, регистры системных адресов, регистры отладки и т.д. Доступ к этим регистрам жестко регламентирован.

Счетчик команд – регистр, содержащий адрес команды, которую процессор начнет выполнять на следующем такте работы.

2.1 Принцип работы ядра процессора.

Принцип работы ядра процессора основан на цикле, описанном еще Джоном фон Нейманом в 1946 году. В упрощенном виде этапы цикла работы ядра процессора можно представить следующим образом:

1. Блок выборки инструкций проверяет наличие прерываний. Если прерывание есть, то данные регистров и счетчика команд заносятся в стек, а в счетчик команд заносится адрес команды обработчика прерываний. По окончанию работы функции обработки прерываний, данные из стека будут восстановлены;

2. Блок выборки инструкций из счетчика команд считывает адрес команды, предназначенной для выполнения. По этому адресу из КЭШ-памяти или ОЗУ считывается команда. Полученные данные передаются в блок декодирования;

3. Блок декодирования команд расшифровывает команду, при необходимости используя для интерпретации команды записанный в ПЗУ микрокод. Если это команда перехода, то в счетчик команд записывается адрес перехода и управление передается в блок выборки инструкций (пункт 1), иначе счетчик команд увеличивается на размер команды (для процессора с длинной команды 32 бита – на 4) и передает управление в блок выборки данных;

4. Блок выборки данных считывает из КЭШ-памяти или ОЗУ требуемые для выполнения команды данные и передает управление планировщику;

5. Управляющий блок определяет, какому блоку выполнения инструкций обработать текущую задачу, и передает управление этому блоку;

6. Блоки выполнения инструкций выполняют требуемые командой действия и передают управление блоку сохранения результатов;

7. При необходимости сохранения результатов в ОЗУ, блок сохранения результатов выполняет требуемые для этого действия и передает управление блоку выборки инструкций (пункт 1).

Описанный выше цикл называется процессом (именно поэтому процессор называется процессором). Последовательность выполняемых команд называется программой.

Скорость перехода от одного этапа цикла к другому определяется тактовой частотой процессора, а время работы каждого этапа цикла и время, затрачиваемое на полное выполнение одной инструкции, определяется устройством ядра процессора.

2.2. Способы повышения производительности ядра процессора.

Увеличение производительности ядра процессора, за счет поднятия тактовый частоты, имеет жесткое ограничение. Увеличение тактовой частоты влечет за собой повышение температуры процессора, энергопотребления и снижение стабильности его работы и срока службы.

Поэтому разработчики процессоров применяют различные архитектурные решения, позволяющие увеличить производительность процессоров без увеличения тактовой частоты.

Рассмотрим основные способы повышения производительности процессоров.

2.2.1. Конвейеризация.

Каждая инструкция, выполняемая процессором, последовательно проходит все блоки ядра, в каждом из которых совершается своя часть действий, необходимых для выполнения инструкции. Если приступать к обработке новой инструкции только после завершения работы над первой инструкцией, то большая часть блоков ядра процессора в каждый момент времени будет простаивать, а, следовательно, возможности процессора будут использоваться не полностью.

Рассмотрим пример, в котором процессор будет выполнять программу, состоящую из пяти инструкций (К1–К5), без использования принципа конвейеризации. Для упрощения примера примем, что каждый блок ядра процессора выполняет инструкцию за 1 такт.

Такты Выборка инструкции Декодирование инструкции Выборка данных Выполнение инструкции Сохранение результата
1 K1 - - - -
2 - K1 - - -
3 - - K1 - -
4 - - - K1 -
5 - - - - K1
6 K2 - - - -
7 - K2 - - -
8 - - K2 - -
9 - - - K2 -
10 - - - - K2
11 K3 - - - -
12 - K3 - - -
13 - - K3 - -
14 - - - K3 -
15 - - - - K3
16 K4 - - - -
17 - K4 - - -
18 - - K4 - -
19 - - - K4 -
20 - - - - K4
21 K5 - - - -
22 - K5 - - -
23 - - K5 - -
24 - - - K5 -
25 - - - - K5

Как видно из таблицы, для выполнения пяти инструкций процессору понадобилось 25 тактов. При этом в каждом такте четыре из пяти блоков ядра процессора простаивали, т.е. процессор использовал всего 20% своего потенциала. Естественно, в реальных процессорах все сложнее. Разные блоки процессора решают разные по сложности задачи. Сами инструкции тоже отличаются друг от друга по сложности. Но в общем ситуация остается такой же.

Для решения этой проблемы во всех современных процессорах выполнение инструкций построено по принципу конвейера, то есть по мере освобождения блоков ядра, они загружаются обработкой следующей инструкции, не дожидаясь пока предыдущая инструкция выполнится полностью.

Рассмотрим пример выполнения той же программы, состоящей из пяти инструкций, но с использованием принципа конвейеризации.

Такты Выборка инструкции Декодирование инструкции Выборка данных Выполнение инструкции Сохранение результата
1 K1 - - - -
2 K2 K1 - - -
3 K3 K2 K1 - -
4 K4 K3 K2 K1 -
5 K5 K4 K3 K2 K1
6 - K5 K4 K3 K2
7 - - K5 K4 K3
8 - - - K5 K4
9 - - - - K5

Та же программа была выполнена за 9 тактов, что почти 2.8 раза быстрее, чем при работе без конвейера. Как видно из таблицы максимальная загрузка процессора была получена на 5 такте. В этот момент использовались все блоки ядра процессора. А с первого по четвертый такт, включительно, происходило наполнение конвейера.

Так как процессор выполняет команды непрерывно, то, в идеале, он мог бы быть занят на 100%, при этом, чем длиннее был бы конвейер, тем больший выигрыш в производительности был бы получен. Но на практике это не так.

Во-первых, реальный поток команд, обрабатываемый процессором – непоследовательный. В нем часто встречаются переходы. При этом пока команда условного перехода не будет обработана полностью, конвейер не сможет начать выполнение новой команды, так как не знает, по какому адресу она находится.

После условного перехода конвейер приходится наполнять заново. И чем длиннее конвейер, тем дольше это происходит. В результате, прирост производительности от введения конвейера снижается.

Для уменьшения влияния условных переходов на работу конвейера, в ядро процессора вводятся блоки предсказания условных переходов. Основная задача этих блоков – определить, когда будет совершен условный переход и какие команды будут выполнены после совершения условного перехода.

Если условный переход удалось предсказать, то выполнение инструкций по новому адресу начинается раньше, чем будет закончена обработка команды условного перехода. В результате, наполнение конвейера не пострадает.

По статистике, точность блоков предсказания условных переходов в современных процессорах превышает 90%, что позволяет делать достаточно длинные, но при этом хорошо наполняемые конвейеры.

Во-вторых, часто обрабатываемые инструкции – взаимосвязаны, то есть одна из инструкций требует в качестве исходных данных результата выполнения другой инструкции.

В этом случае она может быть выполнена только после полного завершения обработки первой инструкции. Однако современные процессоры могут анализировать код на несколько инструкций вперед и, например, параллельно с первой инструкцией обработать третью инструкцию, которая никак не зависит от первых двух.

В большинстве современных процессорах задача анализа взаимосвязи инструкций и составления порядка их обработки ложится на плечи процессора, что неминуемо ведет к снижению его быстродействия и увеличению стоимости.

Однако все большую популярность получает статическое планирование, когда порядок выполнения программы процессором определяется на этапе компиляции программы. В этом случае инструкции, которые можно выполнить параллельно, объединяются компилятором в одну длинную команду, в которой все инструкции заведомо параллельны. Процессоры, работающие с такими инструкциями, построены на базе архитектура VLIW (Very long instruction word).

2.2.2. Суперскалярность.

Суперскалярность – архитектура вычислительного ядра, при которой наиболее нагруженные блоки могут входить в нескольких экземплярах. Скажем, в ядре процессора блок выборки инструкций может нагружать сразу несколько блоков декодирования.

В этом случае блоки, выполняющие более сложные действия и работающие дольше, за счет параллельной обработки сразу нескольких инструкций не будут задерживать весь конвейер.

Однако параллельное выполнение инструкций возможно, только если эти инструкции – независимые.

Структурная схема ядра конвейера гипотетического процессора, построенного с использованием принципа суперскалярности, приведена на рисунке 1. На этом рисунке в каждом ядре процессора работает несколько блоков декодирования, несколько блоков выборки данных и несколько блоков выполнения инструкций.

2.2.3. Параллельная обработка данных.

Бесконечно повышать производительность процессоров, за счет увеличения тактовой частоты, невозможно. Увеличение тактовой частоты влечет за собой увеличение тепловыделения, уменьшение срока службы и надежности работы процессоров, да и задержки от обращения к памяти сильно снижают эффект от увеличения тактовой частоты. Действительно, сейчас практически не встретишь процессоры с тактовой частотой выше 3.8 ГГц.

Связанные с увеличением тактовой частоты проблемы заставляют разработчиков искать иные пути повышения производительности процессоров. Один из наиболее популярных способов – параллельные вычисления.

Подавляющее большинство современных процессоров имеют два и более ядра. Топовые модели могут содержать и 8, и даже 12 ядер, причем с поддержкой технологии hyper-threading. Преимущества от ввода дополнительных ядер вполне понятны, мы практически получаем несколько процессоров, способных независимо решать каждый свои задачи, при этом, естественно, возрастает производительность. Однако прирост производительности далеко не всегда оправдывает ожидания.

Во-первых, далеко не все программы поддерживают распределение вычислений на несколько ядер. Естественно, можно программы разделять между ядрами, чтобы на каждом ядре работал свой набор независимых программ. Например, на одном ядре работает операционная система с набором служебных программ, на другом пользовательские программы и так далее.

Но это дает выигрыш в производительности до тех пор, пока не появляется программа, требующая ресурсов больше, чем может дать одно ядро. Хорошо, если она поддерживает распределение нагрузки между несколькими ядрами. Но на данный момент общедоступных программ, способных распределить нагрузку между 12 ядрам, да еще в режиме Hyper-Threading, можно «сосчитать на пальцах одной руки». Я, конечно, утрирую, существуют программы, оптимизированные для многопоточных вычислений, но большинству простых пользователей они не нужны. А вот наиболее популярные программы, а тем более игры, пока что «плохо» адаптируются к многоядерным процессорам, особенно, если количество ядер больше четырех.

Во-вторых, усложняется работа с памятью, так как ядер – много, и всем им требуется доступ к ОЗУ. Требуется сложный механизм, определяющий очередность доступа ядер процессора к памяти и к другим ресурсам ЭВМ.

В-третьих, возрастает энергопотребление, а, следовательно, увеличивается тепловыделение и требуется мощная система охлаждения.

Ну и, в-четвертых, себестоимость производства многоядерных процессоров – немаленькая, а, соответственно, и цена на такие процессоры «кусается».

Несмотря на все недостатки, применение процессоров с 2-4 ядрами, несомненно, дает значительный прирост производительности. Однако, на данный момент, применение процессоров с количеством ядер больше четырех не всегда оправдывает ожидание. Однако, в ближайшем будущем, ситуация должна кардинально измениться. Обязательно появится множество программ с поддержкой многопоточности, производительность отдельных ядер возрастет, а их цена снизится.

2.2.4. Технология Hyper-Threading.

Технология Intel Hyper-threading позволяет каждому ядру процессора выполнять две задачи одновременно, по сути, делая из одного реального ядра два виртуальных. Это возможно из-за того, что в таких ядрах сохраняется состояние сразу двух потоков, так как у ядра есть свой набор регистров, свой счетчик команд и свой блок работы с прерываниями для каждого потока. В результате, операционная система видит такое ядро, как два отдельных ядра, и будет с ними работать так же, как работала бы с двуядерным процессором.

Однако остальные элементы ядра для обоих потоков – общие, и делятся между ними. Кроме этого, когда по какой-либо причине один из потоков освобождает элементы конвейера, другой поток использует свободные блоки.

Элементы конвейера могут быть не задействованы, если, например, произошел промах при обращении в КЭШ-память, и необходимо считать данные из ОЗУ, или неверно был предсказан переход, или ожидаются результаты обработки текущей инструкции, или какие-то блоки вообще не используются при обработке данной инструкции и т.д.

Большинство программ не могут полностью нагрузить процессор, так как некоторые, в основном, используют несложные целочисленные вычисления, практически не задействуя блок FPU. Другие же программы, например 3D-студия, требуют массу расчетов с использованием чисел с плавающей точкой, но при этом освобождая некоторые другие исполнительные блоки и так далее.

К тому же практически во всех программах – много условных переходов и зависимых переменных. В результате, использование технологии Hyper-threading может дать существенный прирост производительности, способствуя максимальной загрузке конвейера ядра.

Но не все так просто. Естественно, прирост производительности будет меньше, чем от использования нескольких физических ядер, так как все-таки потоки используют общие блоки одного конвейера и часто вынуждены ждать освобождения требуемого блока. К тому же большинство процессоров уже имеют несколько физических ядер, и при использовании технологии Hyper-threading виртуальных ядер может стать слишком много, особенно, если процессор содержит четыре и больше физических ядра.

Так как на данный момент программ, способных распределять вычисления на большое количество ядер, – крайне мало, то в этом случае результат может разочаровать пользователей.

Есть еще одна серьезная проблема технологии Hyper-Threading – это конфликты, возникающие, когда инструкции разных потоков нуждаются в однотипных блоках. Может сложиться ситуация, когда параллельно будут работать два схожих потока, часто использующие одни и те же блоки. В таком случае прирост производительности будет минимален.

В результате, технология Hyper-Threading очень зависима от типа нагрузки на процессор и может дать хороший прирост производительности, а может быть практически бесполезной.

2.2.5. Технология Turbo Boost.

Производительность большинства современных процессоров в домашних условиях можно немного поднять, попросту говоря разогнать – заставить работать на частотах, превышающих номинальную, т.е. заявленную производителем.

Частота процессора рассчитывается, как частота системной шины, умноженная на некий коэффициент, называемый множителем. Например, процессор Core i7-970 работает с системной шиной DMI на базовой частоте – 133 МГц, и имеет множитель – 24. Таким образом, тактовая частота ядра процессора составит: 133 Мгц*24= 3192 Мгц.

Если в настройках BIOS увеличить множитель или поднять тактовую частоту системной шины, то тактовая частота процессора увеличится, а, соответственно, увеличится и его производительность. Однако процесс этот – далеко небезопасный. Из-за разгона процессор может работать нестабильно или вообще выйти из строя. Поэтому к разгону нужно подходить ответственно и тщательно контролировать параметры работы процессора.

С появление технологии Turbo Boost все стало гораздо проще. Процессоры с этой технологией могут сами динамически, на короткий промежуток времени, повышать тактовую частоту, тем самым, увеличивая свою производительность. При этом процессор контролирует все параметры своей работы: напряжение, силу тока, температуру и т.д., не допуская сбоев и тем более выхода из строя. Например, процессор может отключить неиспользуемые ядра, тем самым, понизив общую температуру, а взамен увеличить тактовую частоту остальных ядер.

Так как на данный момент существует не очень много программ, использующих для обработки данных все процессорные ядра, особенно, если их больше четырех, то применение технологии Turbo Boost позволяет значительно поднять производительность процессора, особенно, при работе с однопоточными приложениями.

2.2.6. Эффективность выполнения команд.

В зависимости от типов обрабатываемых инструкций и способа их исполнения, процессоры подразделяются на несколько групп:

  • на классические процессоры CISC;
  • на процессоры RISC с сокращенным набором команд;
  • на процессоры MISC c минимальным набором команд;
  • на процессоры VLIW с набором сверхдлинных команд.

CISC (Complex instruction set computer) – это процессоры со сложным набором команд. Архитектура CISC характеризуется:

  • сложными и многоплановыми инструкциями;
  • большим набором различных инструкций;
  • нефиксированной длиной инструкций;
  • многообразием режимов адресации.

Исторически, процессоры с архитектурой CISC появились первыми, и их появление было обусловлено общей тенденцией разработки первых ЭВМ. ЭВМ стремились сделать более функциональными и в то же время простыми для программирования. Естественно, для программистов вначале было удобнее иметь широкий набор команд, чем реализовывать каждую функцию целой отдельной подпрограммой. В результате, объем программ сильно сокращался, а вместе с ним и трудоемкость программирования.

Однако такая ситуация продолжалась недолго. Во-первых, с появлением языков высокого уровня отпала необходимость непосредственного программирования в машинных кодах и на ассемблере, и, во-вторых, со временем количество различных команд сильно выросло, а сами инструкции усложнились. В результате, большинство программистов, в основном, использовали какой-то определенный набор инструкций, практически игнорируя наиболее сложные инструкции.

В результате, программисты уже не имели особой выгоды от широкого набора инструкций, так как компиляция программ стала автоматической, а сами процессоры обрабатывали сложные и разнообразные инструкции медленно, в основном, из-за проблем с их декодированием.

К тому же новые сложные инструкции разработчики процессоров отлаживали меньше, так как это был трудоемкий и сложный процесс. В результате, некоторые из них могли содержать ошибки.

Ну и, естественно, чем сложнее инструкции, чем больше действий они выполняют, тем сложнее их выполнение распараллеливать, и, соответственно, тем менее эффективно они загружают конвейер процессора.

Однако к этому моменту уже было разработано огромное количество программ для процессоров с CISC архитектурой, поэтому экономически было невыгодно переходить на принципиально новую архитектуру, даже дающую выигрыш в производительности процессора.

Поэтому был принят компромисс, и CISC процессоры, начиная с Intel486DX, стали производить с использованием RISC-ядра. Т.е., непосредственно перед исполнением, сложные CISC-инструкции преобразуют в более простой набор внутренних инструкций RISC. Для этого используют записанные в размещенном внутри ядра процессора ПЗУ наборы микрокоманд – серии простых инструкций, в совокупности выполняющих те же действия, что и одна сложная инструкция.

RISC (Reduced Instruction Set Computer) – процессоры с сокращенным набором инструкций.

В концепции RISC-процессоров предпочтение отдается коротким, простым и стандартизированным инструкциям. В результате, такие инструкции проще декодировать и выполнять, а, следовательно, устройство процессора становится так же проще, так как не требуется сложных блоков для выполнения нестандартных и многофункциональных инструкций. В результате, процессор становится дешевле, и появляется возможность дополнительно поднять его тактовую частоту, за счет упрощения внутренней структуры и уменьшения количества транзисторов, или снизить энергопотребление.

Так же простые RISC-инструкции гораздо проще распараллеливать, чем CISC-инструкции, а, следовательно, появляется возможность больше загрузить конвейер, ввести дополнительные блоки обработки инструкций и т.д.

Процессоры, построенные по архитектуре RISC, обладают следующими основными особенностями:

  • фиксированная длина инструкций;
  • небольшой набор стандартизированных инструкций;
  • большое количество регистров общего назначения;
  • отсутствие микрокода;
  • меньшее энергопотребление, по сравнению с CISC-процессорами аналогичной производительности;
  • более простое внутреннее устройство;
  • меньшее количество транзисторов, по сравнению с CISC-процессорами аналогичной производительности;
  • отсутствие сложных специализированных блоков в ядре процессора.

В результате, хотя RISC-процессоры и требуют выполнения большего количества инструкций для решения одной и той же задачи, по сравнению с CISС-процессорами, они, в общем случае, показывают более высокую производительность. Во-первых, выполнение одной RISC-инструкции занимает гораздо меньше времени, чем выполнение CISC-инструкции. Во-вторых, RISC-процессоры более широко используют возможности параллельной работы. В-третьих, RISC-процессоры могут иметь более высокую тактовую частоту, по сравнению с CISC-процессорами.

Однако, несмотря на явное преимущество RISC, процессоры не получили столь серьезного распространения, как CISC. Правда, связано это в основном не с тем, что они по каким-то параметрам могли быть хуже CISC-процессоров. Они не хуже. Дело в том, что СISC-процессоры появились первыми, а программное обеспечение для CISC -процессоров – несовместимо с RISC-процессорами.

В результате, экономически крайне невыгодно переписывать все программы, которые уже разработаны, отлажены и используются огромным количеством пользователей. Вот так и получилось, что теперь мы вынуждены использовать CISC-процессоры. Правда, как я уже говорил, разработчики нашли компромиссное решение данной проблемы, и уже очень давно в CISC-процессорах используют RISC-ядро и замену сложных команд на микропрограммы. Это позволило несколько сгладить ситуацию. Но все же RISC-процессоры по большинству параметров выигрывают даже у CISC-процессоров с RISC-ядром.

MISC (Minimal Instruction Set Computer) – дальнейшее развитие архитектуры RISС, основанное на еще большем упрощении инструкций и уменьшении их количества. Так, в среднем, в MISC-процессорах используется 20-30 простых инструкций. Такой подход позволил еще больше упростить устройство процессора, снизить энергопотребление и максимально использовать возможности параллельной обработки данных.

VLIW (Very long instruction word) – архитектура процессоров, использующая инструкции большой длины, содержащие сразу несколько операций, объединенных компилятором для параллельной обработки. В некоторых реализациях процессоров длина инструкций может достигать 128 или даже 256 бит.

Архитектура VLIW является дальнейшим усовершенствованием архитектуры RISC и MISC с углубленным параллелизмом.

Если в процессорах RISC организацией параллельной обработки данных занимался сам процессор, при этом, затрачивая часть ресурсов на анализ инструкций, выявление зависимостей и предсказание условных переходов (причем, зачастую, процессор мог ошибаться, например, в предсказании условных переходов, тем самым внося серьезные задержки в обработку инструкций, или просматривать код программы на недостаточную глубину для выявления независимых операций, которые могли бы выполняться параллельно), то в VLIW-процессорах задача оптимизации параллельной работы возлагалась на компилятор, который не был ограничен ни во времени, ни в ресурсах и мог проанализировать всю программу для составления оптимального для работы процессора кода.

В результате, процессор VLIW выигрывал не только от упразднения накладных расходов на организацию параллельной обработки данных, но и получал прирост производительности, из-за более оптимальной организации параллельного выполнения инструкций.

Кроме этого упрощалась конструкция процессора, так как упрощались или вовсе упразднялись некоторые блоки, отвечающие за анализ зависимостей и организацию распараллеливания обработки инструкций, а это, в свою очередь, вело к снижению энергопотребления и себестоимости процессоров.

Однако даже компилятору тяжело справляться с анализом кода и организацией его распараллеливания. Часто код программы был сильно взаимозависимый, и, в результате, в инструкции компилятору приходилось вставлять пустые команды. Из-за этого программы для VLIW-процессоров могли быть гораздо длиннее, чем аналогичные программы для традиционных архитектур.

Первые VLIW-процессоры появились в конце 1980-х годов и были разработаны компанией Cydrome. Так же к процессорам с этой архитектурой относятся процессоры TriMedia фирмы Philips, семейство DSP C6000 фирмы Texas Instruments, Эльбру?с 2000 – процессор российского производства, разработанный компанией МЦСТ при участии студентов МФТИ и др. Поддержка длинных инструкций с явным параллелизмом есть и в процессорах семейства Itanium.

2.3. Способы снижения энергопотребления процессора.

Не менее, чем производительность, для процессора важен и такой параметр, как энергопотребление. Особенно остро вопрос энергопотребления встал сейчас, когда наблюдается настоящий бум популярности портативных устройств.

Нашу жизнь уже нельзя представить комфортной без использования ноутбуков, планшетных компьютеров и смартфонов. Однако единственное, что омрачает эту тенденцию, – это время автономной работы подобных устройств. Так ноутбуки, в среднем, могут автономно работать 3-5 часов, планшеты – чуть больше, смартфоны уже могут протянуть при полной нагрузке почти сутки и то не все. Но все это крайне мало для комфортной работы с ними.

Время автономной работы этих устройств напрямую зависит от их энергопотребления, и немалая доля энергопотребления приходится на процессор. Для снижения энергопотребления процессоров используются различные способы и технологии. Давайте рассмотрим наиболее популярные из них.

Самый простой способ снизить энергопотребление и тепловыделение процессора – это уменьшить его тактовую частоту и напряжение, так как энергопотребление процессора пропорционально квадрату его рабочего напряжения и пропорционально тактовой частоте. Наиболее выгодно на энергопотреблении сказывается снижение напряжения. Однако при понижении напряжения рано или поздно уменьшается и тактовая частота, что естественно повлечет за собой снижение производительности.

Однако, зачастую, энергопотребление бывает более критическим параметром работы, и некоторое снижение производительности допустимо. Так большинство мобильных версий процессоров и процессоров для встраиваемых систем имеют тактовую частоту и рабочее напряжение гораздо ниже, чем у их собратьев для настольных версий.

Но не всегда производители устанавливают оптимальное сочетание напряжения и тактовой частоты. Многие мобильные процессоры с установленной тактовой частотой могли бы работать с более низким напряжением, что позволило бы существенно продлить время автономной работы портативного компьютера.

Для получения оптимального соотношения производительности к энергопотреблению, необходимо подобрать такое напряжение, при котором на заданной тактовой частоте процессор будет стабильно работать.

Тактовая частота определяется, исходя из потребностей пользователя, затем для нее подбирается минимальное рабочее напряжение путем постепенного снижения напряжения и тестирования процессора под нагрузкой.

Существуют и не столь кардинальные пути решения этой проблемы.

Например, технология EIST (Enhanced Intel SpeedStep Technology) позволяет динамически изменять энергопотребление процессора, за счет изменения тактовой частоты процессора и напряжения. Изменение тактовой частоты происходит, за счет уменьшения или увеличения коэффициента умножения.

О коэффициенте умножения я уже упоминал выше, но повторюсь. Тактовая частота процессора рассчитывается, как тактовая частота системной шины, умноженная на некий коэффициент, называемый коэффициентом умножения. Уменьшение или увеличение этого коэффициента ведет к уменьшению или увеличению тактовой частоты процессора и к снижению или увеличению рабочего напряжения.

В случаях, когда процессор используется не полностью, его тактовую частоту можно снизить, уменьшая коэффициент умножения. Как только пользователю потребуется больше вычислительных ресурсов, коэффициент умножения будет повышен, вплоть до своего номинального значения. Таким образом, удается несколько снизить энергопотребление.

Аналогичная технология для уменьшения энергопотребления, основанная на динамическом изменении напряжения и тактовой частоты, в зависимости от нагрузки на процессор, используется и компанией AMD, называется она - Cool’n’Quiet .

В абсолютном большинстве случаев вычислительные машины либо вовсе простаивают, либо используются лишь на долю своих возможностей. Например, для просмотра фильма или набора текста вовсе не нужно тех огромных вычислительных возможностей, которыми обладают современные процессоры. Тем более эти мощности не нужны и при простое компьютера, когда пользователь отошел или просто решил сделать небольшой перерыв. Снижая в такие моменты тактовую частоту процессора и его напряжение, можно получить очень серьезный прирост в экономии энергопотребления.

Параметры работы технологии EIST можно настраивать, используя BIOS и программное обеспечение операционной системы, и устанавливать требуемые для конкретного случая профили управления энергопотреблением, тем самым балансируя производительность процессора и его энергопотребление.

Естественно, разработчики стараются оптимизировать и саму структуру процессора для снижения энергопотребления и возможности работы процессора при сверхнизких напряжениях. Однако эта задача – крайне сложная и трудоемкая. Опытные образцы процессоров уже практически вплотную приблизились к порогу минимального рабочего напряжения и уже с трудом отличают напряжение логической единицы от логического нуля. Однако, несмотря на это, разработчики процессоров, в том числе инженеры корпорации Intel, обещают уменьшить энергопотребление современных процессоров аж в 100 раз за ближайшие десять лет. Ну что же, подождем и посмотрим, что у них выйдет.

3. КЭШ-память.

Несмотря на все технологии и уловки разработчиков, производительность процессора все-таки напрямую зависит от скорости выборки команд и данных из памяти. И даже, если процессор имеет сбалансированный и продуманный конвейер, использует технологию Hyper-Threading и так далее, но не обеспечивает должную скорость выборки данных и команд из памяти, то, в результате, общая производительность ЭВМ не оправдает ваших ожиданий.

Поэтому один из важнейших параметров устройства процессора – это КЭШ-память, призванная сократить время выборки команд и данных из основной оперативной памяти и выполняющая роль промежуточного буфера с быстрым доступом между процессором и основной оперативной памятью.

КЭШ-память строится на базе дорогой SRAM-памяти (static random access memory), обеспечивающей доступ к ячейкам памяти гораздо более быстрый, чем к ячейкам DRAM-памяти (dynamic random access memory), на базе которой построена оперативная память. К тому же SRAM-память не требует постоянной регенерации, что так же увеличивает ее быстродействие. Однако более подробно устройство SRAM, DRAM и других типов памяти рассмотрим в следующей статье, а сейчас более подробно рассмотрим принцип работы и устройства КЭШ-памяти.

КЭШ-память делится на несколько уровней. В современных процессорах, обычно, бывает три уровня, а в некоторых топовых моделях процессоров иногда встречается и четыре уровня КЭШ-памяти.

КЭШ-память более высокого уровня всегда больше по размеру и медленнее КЭШ-памяти более низкого уровня.

Самая быстрая и самая маленькая КЭШ-память – это КЭШ-память первого уровня. Она обычно работает на частоте процессора, имеет объем несколько сотен килобайт и располагается в непосредственной близости от блоков выборки данных и команд. При этом она может быть единой (Принстонская архитектура) или разделяться на две части (Гарвардская архитектура): на память команд и память данных. В большинстве современных процессоров используют разделенную КЭШ-память первого уровня, так как это позволяет одновременно с выборкой команд осуществлять выборку данных, что крайне важно для работы конвейера.

КЭШ-память второго уровня – более медленная (время доступа, в среднем, 8-20 тактов процессора), но зато имеет объем несколько мегабайт.

КЭШ-память третьего уровня – еще медленнее, но имеет сравнительно большой объем. Встречаются процессоры с КЭШ-памятью третьего уровня больше 24 Мб.

В многоядерных процессорах, обычно, последний уровень КЭШ-памяти делают общим для всех ядер. Причем, в зависимости от нагрузки на ядра, может динамически изменяться отведенный ядру объем КЭШ-памяти последнего уровня. Если ядро имеет высокую нагрузку, то ему выделяется больше КЭШ-памяти, за счет уменьшения объема КЭШ-памяти для менее нагруженных ядер. Не все процессоры обладают такой возможностью, а только поддерживающие технологию Smart Cache (например, Intel Smart Cache или AMD Balanced Smart Cache).

КЭШ-память более низкого уровня – обычно, индивидуальная для каждого ядра процессора.

Мы рассмотрели, как устроена КЭШ-память, давайте теперь разберемся, как она работает.

Процессор считывает из основной оперативной памяти данные и заносит их в КЭШ-память всех уровней, замещая данные, к которым давно и наиболее редко обращались.

В следующий раз, когда процессору понадобятся эти же данные, они будут считаны уже не из основной оперативной памяти, а из КЭШ-памяти первого уровня, что значительно быстрее. Если к этим данным процессор долго не будет обращаться, то они будут постепенно вытеснены из всех уровней КЭШ-памяти, вначале из первого, так как он самый маленький по объему, затем из второго и так далее. Но, даже если эти данные останутся только в третьем уровне КЭШ-памяти, все равно обращение к ним будет быстрее, чем к основной памяти.

Однако, чем больше уровней КЭШ-памяти, тем сложнее алгоритм замещения устаревших данных и тем больше времени тратится на согласования данных во всех уровнях КЭШ-памяти. В результате, выигрыш от скорости работы КЭШ-памяти быстро сходит на нет. К тому же SRAM-память – очень дорогая, и при больших объемах, а, как помните, каждый новый уровень КЭШ-памяти должен быть больше предыдущего, быстро снижается показатель цена-качество, что крайне негативно сказывается на конкурентоспособности процессора. Поэтому на практике больше четырех уровней КЭШ-памяти не делают.

Ситуация с КЭШ-памятью дополнительно усложняется в многоядерных процессорах, каждое ядро которых содержит свою КЭШ-память. Необходимо вводить дополнительную синхронизацию данных, хранящихся в КЭШ-памяти разных ядер. Например, один и тот же блок данных основной оперативной памяти был занесен в КЭШ-память первого и второго ядра процессора. Затем первый процессор изменил этот блок памяти. Получается, что в КЭШ-памяти второго процессора лежат уже устаревшие данные и необходимо их обновить, а это дополнительная нагрузка на КЭШ-память, что приводит к снижению общего быстродействия процессора. Эта ситуация тем сложнее, чем больше ядер в процессоре, чем больше уровней КЭШ-памяти и чем больше их объем.

Но, несмотря на такие трудности в работе с КЭШ-памятью, ее применение дает явный прирост скорости работы без существенного увеличения стоимости ЭВМ. И пока не будет придумана оперативная память, которая сможет по скорости соперничать с SRAM-памятью, а по цене – с DRAM-памятью, будет применяться иерархическая организация оперативной памяти с использованием нескольких уровней КЭШ-памяти.

Пожалуй, на этом закончим обзор устройства процессора, так как обзор системных шин и принцип их работы приводился в статье «Устройство и назначение материнской платы» , а описание контроллера основной оперативной памяти, часто входящего в состав процессора, типов оперативной памяти и принципов ее работы будет в следующей статье.


Процессор - это, без сомнения, главный компонент любого компьютера. Именно этот небольшой кусочек кремния, размером в несколько десятков миллиметров выполняет все те сложные задачи, которые вы ставите перед своим компьютером. Здесь выполняется операционная система, а также все программы. Но как все это работает? Этот вопрос мы попытаемся разобрать в нашей сегодняшней статье.

Процессор управляет данными на вашем компьютере и выполняют миллионы инструкций в секунду. И под словом процессор, я подразумеваю именно то, что оно на самом деле означает - небольшой чип из кремния, который фактически выполняет все операции на компьютере. Перед тем как перейти к рассмотрению как работает процессор, нужно сначала подробно рассмотреть что это такое и из чего он состоит.

Сначала давайте рассмотрим что такое процессор. CPU или central processing unit (центральное обрабатывающее устройство) - который представляет из себя микросхему с огромным количеством транзисторов, сделанную на кристалле кремния. Первый в мире процессор был разработан корпорацией Intel в 1971 году. Все началось с модели Intel 4004. Он умел выполнять только вычислительные операции и мог обрабатывать только 4 байта данных. Следующая модель вышла в 1974 году - Intel 8080 и мог обрабатывать уже 8 бит информации. Дальше были 80286, 80386, 80486. Именно от этих процессоров произошло название архитектуры.

Тактовая частота процессора 8088 была 5 МГц, а количество операций в секунду только 330 000 что намного меньше чем в современных процессоров. Современные устройства имеют частоту до 10 ГГц и несколько миллионов операций в секунду.

Мы не будем рассматривать транзисторы, переместимся на уровень выше. Каждый процессор состоит из таких компонентов:

  • Ядро - здесь выполняется вся обработка информации и математические операции, ядер может быть несколько;
  • Дешифратор команд - этот компонент относится к ядру, он преобразует программные команды в набор сигналов, которые будут выполнять транзисторы ядра;
  • Кэш - область сверхбыстрой памяти, небольшого объема, в которой хранятся данные, прочитанные из ОЗУ;
  • Регистры - это очень быстрые ячейки памяти, в которых хранятся сейчас обрабатываемые данные. Их есть всего несколько и они имеют ограниченный размер - 8, 16 или 32 бит именно от этот зависит разрядность процессора;
  • Сопроцессор - отдельное ядро, которое оптимизировано только для выполнения определенных операций, например, обработки видео или шифрования данных;
  • Адресная шина - для связи со всеми, подключенными к материнской плате устройствами, может иметь ширину 8, 16 или 32 бит;
  • Шина данных - для связи с оперативной памятью. С помощью нее процессор может записывать данные в память или читать их оттуда. Шина памяти может быть 8, 16 и 32 бит, это количество данных, которое можно передать за один раз;
  • Шина синхронизации - позволяет контролировать частоту процессора и такты работы;
  • Шина перезапуска - для обнуления состояния процессора;

Главным компонентом можно считать ядро или вычислительное-арифметическое устройство, а также регистры процессора. Все остальное помогает работать этим двум компонентам. Давайте рассмотрим какими бывают регистры и какое у них предназначение.

  • Регистры A, B, C - предназначены для хранения данных во время обработки, да, их только три, но этого вполне достаточно;
  • EIP - содержит адрес следующей инструкции программы в оперативной памяти;
  • ESP - адрес данных в оперативной памяти;
  • Z - содержит результат последней операции сравнения;

Конечно, это далеко не все регистры памяти, но эти самые главные и ими больше всего пользуется процессор во время выполнения программ. Ну а теперь, когда вы знаете из чего состоит процессор, можно рассмотреть как он работает.

Как работает процессор компьютера?

Вычислительное ядро процессора может выполнять только математические операции, операции сравнения и перемещение данных между ячейками и оперативной памятью, но этого вполне достаточно, чтобы вы могли играть игры, смотреть фильмы и просматривать веб-страницы и многое другое.

Фактически любая программа состоит из таких команд: переместить, сложить, умножить, делить, разница и перейти к инструкции если выполняется условие сравнения. Конечно, это далеко не все команды, есть другие, которые объединяют между собой уже перечисленные или упрощают их использование.

Все перемещения данных выполняются с помощью инструкции перемещения (mov), эта инструкция перемещает данные между ячейками регистров, между регистрами и оперативной памятью, между памятью и жестким диском. Для арифметических операций есть специальные инструкции. А инструкции перехода нужны для выполнения условий, например, проверить значение регистра A и если оно не равно нулю, то перейти к инструкции по нужному адресу. Также с помощью инструкций перехода можно создавать циклы.

Все это очень хорошо, но как же все эти компоненты взаимодействуют между собой? И как транзисторы понимают инструкции? Работой всего процессора управляет дешифратор инструкций. Он заставляет каждый компонент делать то, что ему положено. Давайте рассмотрим что происходит когда нужно выполнить программу.

На первом этапе дешифратор загружает адрес первой инструкции программы в памяти в регистр следующей инструкции EIP, для этого он активирует канал чтения и открывает транзистор-защелку чтобы пустить данные в регистр EIP.

Во втором тактовом цикле дешифратор инструкций преобразует команду в набор сигналов для транзисторов вычислительного ядра, которые выполняют ее и записывают результат в один из регистров, например, С.

На третьем цикле дешифратор увеличивает адрес следующей команды на единицу, так, чтобы он указывал на следующую инструкцию в памяти. Далее, дешифратор переходит к загрузке следующей команды и так до окончания программы.

Каждая инструкция уже закодирована последовательностью транзисторов, и преобразованная в сигналы, она вызывает физические изменения в процессоре, например, изменению положения защелки, которая позволяет записать данные в ячейку памяти и так далее. На выполнение разных команд нужно разное количество тактов, например, для одной команды может понадобиться 5 тактов, а для другой, более сложной до 20. Но все это еще зависит от количества транзисторов в самом процессоре.

Ну с этим все понятно, но это все будет работать только если выполняется одна программа, а если их несколько и все одновременно. Можно предположить, что у процессора есть несколько ядер, и тогда на каждом ядре выполняется отдельная программ. Но нет, на самом деле там таких ограничений нет.

В один определенный момент может выполняться только одна программа. Все процессорное время разделено между всеми запущенными программами, каждая программа выполняется несколько тактов, затем процессор передается другой программе, а все содержимое регистров сохраняется в оперативную память. Когда управление возвращается этой программе, то в регистры грузятся ранее сохраненные значения.

Выводы

Вот и все, в этой статье мы рассмотрели как работает процессор компьютера, что такое процессор и из чего он состоит. Возможно, это немного сложно, но мы рассмотрели все более просто. Надеюсь, теперь вам стало более ясно то, как работает это очень сложное устройство.

На завершение видео об истории создания процессоров:


© 2024
zane-host.ru - Программы. Компьютеры. Сетевое оборудование. Оргтехника