31.07.2023

Второе поколение мобильной связи 2g. Сети и стандарты мобильной связи на территории российской федерации. Как узнать частоту сотовой связи


Сотовая совершенствуется рывками. Переход от одной технологии к другой свидетельствует о вводе нового поколения. Именно поэтому, если упрощать, стандарты называются 1G, 2G, 3G и так далее - буква «g» в данном случае происходит от слова «generation». Давайте же постараемся понять, как развивалась мобильная связь. Заодно мы выясним, почему операторы не отказываются от поддержки старых стандартов.

Сейчас самое первое поколение сотовой связи принято называть 1G . Но в годы действия этих сетей никто о таком понятии не подозревал, тогда многие люди не думали о том, что в ближайшем будущем сотовая связь станет совсем другой. Итак, что же представляло собой первое поколение?

Фактически это была аналоговая связь. Её запуск был осуществлён компанией AT&T , а первый звонок состоялся 3 апреля 1973 года - его совершил Мартин Купер, являвшийся главой мобильного подразделения . Как и в случае со стационарной аналоговой связью, теоретически сотовый телефон можно было задействовать в качестве модема. Но решиться на это мог только какой-нибудь миллионер, ведь минута разговора в те времена стоила огромных денег.

Как и в случае с последующими поколениями, 1G - это лишь название, объединяющее под собой несколько разных стандартов. В Канаде, США, Австралии, а также Южной и Центральной Америке применялся стандарт AMPS . В странах Скандинавии и некоторых государствах получил распространение стандарт NMT и его разновидности. Ну а в Италии, Испании, Англии, Австрии, Ирландии и Японии применялось сотовое оборудование стандарта TACS . И это только три самых популярных варианта реализации сетей! Все эти стандарты были совершенно несовместимы друг с другом. Поэтому британец, приехавший в Америку, не мог разговаривать по своему собственному телефону. Друг от друга разные стандарты отличались не только диапазоном частот, но и радиусом соты, мощностью передатчика, временем переключения на границе соты и соотношением сигнала к шуму. Подробнее со всеми спецификациями вы можете ознакомиться в прилагающейся табличке.

Обычным людям сотовая связь первого поколения стала доступной далеко не сразу. Первое десятилетие некоторые компании занимались только экспериментами. Коммерческая реализация произошла только в 1984 году. Достаточно быстро стало ясно, что аналоговая сотовая связь имеет ряд недостатков. Во-первых, каждая сота имела малую ёмкость - при подключении к ней большого количества абонентов начинались серьезные проблемы. Во-вторых, качество сигнала было далеко от идеала, особенно если абонент находился не на улице, а в здании. Первыми об этих проблемах задумались европейцы. Они начали разрабатывать цифровую связь.

Второе поколение сотовой связи

В 1982 году Европейская конференция почтовых и телекоммуникационных ведомств начала разрабатывать стандарт GSM . Вскоре его начали называть 2G-связью. Изначально GSM предназначался для стран-членов Европейского института стандартов в телекоммуникации. Но позже разработкой заинтересовались Средний Восток, Африка, Азия и Восточная Европа. Коммерческий релиз сетей стандарта GSM состоялся в 1991 году. Цифровой метод передачи данных позволял абонентам обмениваться SMS-сообщениями. А чуть позже им стал доступен выход в Интернет через протокол WAP .

Этот стандарт покорил не всех. Некоторые государства пошли по своему пути. Например, в США многие 2G-сети использовали стандарт D-AMPS . Лишь спустя какое-то время американцы перешли на GSM1900 . А в некоторых странах надолго завоевал популярность стандарт CDMA . Он не был совместим с GSM, поэтому под него разрабатывались отдельные мобильные телефоны.

Постепенно на прилавках магазинов стало появляться всё большее количество портативных устройств, умеющих выходить в глобальную паутину. В связи с этим сотовым операторам нужно было что-то делать, так как в 2G остро не хватало скорости передачи данных. Поэтому вскоре появилось промежуточное поколение сотовой связи, которое принято называть 2, . В этот стандарт внедрили поддержку технологии GPRS , а затем и EDGE . Отныне мобильным телефоном осуществлялась пакетная передача данных - абонент платил за конкретный объем трафика, а не за время соединения с сервером. Это не только сэкономило людям деньги, но и увеличило скорость передачи и приема данных. В 2G-сетях этот параметр равнялся 9,6 Кбит/с, тогда как поддержка телефоном поколения 2,5G позволяла выходить в интернет на скорости до 170 Кбит/с (GPRS) или даже 384 Кбит/с (EDGE). В некоторых странах эти две технологии называли совершенно по-разному, но суть от этого не менялась.

Выше вы видите табличку, в которой указаны конкретные отличия всех стандартов, принадлежащих к поколениям 2G и 2,5G.

Третье поколение сотовой связи

В IMT-2000 (так принято называть 3G в профессиональной среде) входят пять стандартов: CDMA2000 , W-CDMA , TD-CDMA/TD-SCDMA и DECT . Последний не является стандартом сотовой связи, так как он используется в домашней и офисной беспроводной телефонии. Остальные стандарты применяются для обеспечения связью владельцев мобильных телефонов. Все они имеют похожие спецификации. Интересно, что метод работы таких сетей был изобретён в СССР ещё в 1935 году. Однако долгое время данной технологией пользовались лишь военные. В гражданский сегмент она вышла только в середине 1980-ых годов, в силу необходимости развивать мобильную связь.

От 2G третье поколение в первую очередь отличалось повысившейся скоростью передачи данных. Если абонент стоит на месте, то он может скачивать данные на скорости около 2 Мбит/с. При неспешном шаге трафик загружается со скоростью примерно 384 Кбит/с. В транспортном средстве скорость падала ещё сильнее - до 144 Кбит/с.

С появлением смартфонов стало мало и вышеуказанных скоростей. Поэтому достаточно быстро стал популярным стандарт HSPA . Он ознаменовал собой приход поколения 3,5G. Наделенные его поддержкой сотовые телефоны научились передавать данные со скоростью 14,4 Мбит/с. И это было только начало! В дальнейшем стандарт совершенствовался, в результате чего теоретически оказалась достижима скорость 84 Мбит/с. В основе HSPA заложена многокодовая передача данных при сопоставимых размерах сот.

Четвертое поколение сотовой связи

В конце 2000-ых годов на свет стали появляться «айфоны» и «андроиды». Эти смартфоны отличались от предшественников крупным ЖК-дисплеем. Теперь уже никому не хотелось просматривать скромные WAP-странички. Отныне встроенных комплектующих вполне хватало для того, чтобы браузер без каких-либо проблем отображал полноценную страницу, насколько бы тяжелой она не было. Но для её быстрой загрузки требуется высокая скорость. Обеспечить её мог только совершенно новый стандарт. Активная популяризация 4G, или IMT-Advanced , началась в марте 2008 года.

Результатом работы ученых стали два стандарта: WiMAX и LTE . Сейчас вы сами знаете о том, какой из них получил наибольшее распространение. Внедрение LTE позволило существенно увеличить емкость каждой соты, хотя ареал её действия при этом уменьшился. Теперь минимальная скорость передачи данных составляла 100 Мбит/с, чего хватает большинству среднестатистических владельцев смартфон. В дальнейшем этот параметр вырос ещё сильнее. Случилось это за счет реализации технологии LTE-Advanced . В зависимости от категории поддерживаемой аппаратом технологии, может достигаться скорость 400 Мбит/с или даже 1 Гбит/с!

В отличие от предыдущих поколений, стандарт LTE изначально предназначался только для пакетной передачи данных. Но со временем стала доступной и цифровая передача голоса - за это ответственна технология . Качество звука при этом гораздо выше, нежели при разговоре посредством сетей 2G или 3G. Однако до сих пор эту технологию поддерживают далеко не все смартфоны.

Пятое поколение сотовой связи

Сейчас идет активная разработка 5G. Возможностей LTE в плане передачи данных вполне хватает. Поэтому при разработке нового стандарта наибольший упор делается на ёмкость сот. Ведь количество абонентов растёт всё сильнее. Больше всего 5G облегчит жизнь создателям носимых устройств и девайсов, объединяющихся в систему «Умный дом». Ожидается, что только на площади в 1 км 2 будет возможно подключение к сети одного миллиона гаджетов! По состоянию на начало 2017 года новое поколение только тестируется. Когда нас ждет полноценная его эксплуатация - не ясно.

Поддержка старых стандартов

Как известно, сотовым операторам приходится размещать на своих вышках гору оборудования. В теории можно было бы заменить 2G-передатчики на 3G-передатчики. Но сделать это - значит лишить связи владельцев мобильных телефонов, работающих только в стандарте GSM. Это привело бы к огромным убыткам, так как даже сейчас подобными аппаратами пользуется огромное число людей - все они тут же перешли бы к другому оператору. Вот и получается, что оборудование приходится дополнять, а не менять.

В обозримом будущем отказа от устаревших стандартов не случится. Объясняется это двумя причинами:

  • до сих пор производятся, а они зачастую не поддерживают даже 3G, не говоря уже о сетях четвертого поколения;
  • 2G-оборудование покрывает сетью более обширную территорию, нежели 3G- или 4G-передатчики аналогичной мощности - это позволяет избавить определенную территорию от «белых пятен».

Теперь вы знаете об основных отличиях разных стандартов. Если вкратце, то в первую очередь изменению подвергались ёмкость сот, ширина покрытия (каждый раз в меньшую сторону, так как таковы законы более высокочастотных сигналов) и скорость передачи данных.

При выборе системы усиления крайне важно знать два параметра: поколение мобильной сети (2G, 3G или 4G), качество которой вы хотите улучшить, и частоту, на которой она функционирует.

Дело в том, что все основные компоненты систем усиления - антенны, репитеры, модемы и роутеры - создаются под определенные частотные диапазоны и очень редко поддерживают сразу все существующие в мире стандарты. Другими словами, вы можете приобрести комплект усиления «для 4G-интернета», но если в его составе будет антенна, рассчитанная на частотный диапазон, в котором не работает ваш оператор, деньги будут потрачены впустую.

Приведем пример. Чаще всего 4G-интернет предоставляется на частоте 2600 МГц, и большинство комплектов для усиления 4G рассчитаны именно на эту частоту. Тем не менее, все чаще отечественные операторы начинают использовать дополнительные частоты 1800 и 800 МГц. Если в вашем местоположении работает именно такая сеть, то комплект, рассчитанный на частоту 2600 МГц, будет бесполезен.

Итак, чтобы выбрать комплект, вам нужно знать, какие технологии вы хотите усилить и в каких частотных диапазонах они работают. Проще всего это сделать с помощью смартфона под управлением операционной системы Android или iOS (iPhone).

Определяем поколение сотовой сети

Определить поколение сотовой сети с помощью смартфона, как правило, очень легко. В большинстве современных операционных систем технология передачи данных указывается в строке состояния рядом с уровнем сотового сигнала. Технология может быть указана непосредственно (2G, 3G или 4G) или с помощью одной из аббревиатур. Чаще всего встречаются следующие обозначения:

  • 2G, GPRS (G), EDGE (E) - традиционная технология 2G, на которой работает стандартная голосовая GSM-связь и медленный мобильный интернет;
  • 3G, UMTS, HSDPA (H), HSPA+ (H+) - третье поколение сотовой связи, используемое для звонков и доступа к широкополосному мобильному интернету;
  • 4G, LTE (L) - четвертое поколение сотовой связи, в данный момент используемое отечественными операторами только для доступа к высокоскоростному мобильному интернету.

Например, на смартфонах Xiaomi с двумя SIM-картами строка состояния выглядит следующим образом:

Как легко определить, первая SIM-карта оператора МТС в данный момент работает в режиме 4G, а вторая SIM-карта Tele2 - в 3G.

На каких частотах работают операторы в России

Казалось бы, узнав, какие стандарты связи доступны в вашем местоположении, можно приступать к выбору комплекта усиления. Тем не менее, есть одна существенная проблема: одна и та же технология связи может работать на разных частотах.

Каждый стандарт связи (2G, 3G и 4G) содержит множество подстандартов. Чтобы система усиления работала корректно и усиливала именно тот частотный диапазон, на котором работает ваш оператор, предварительно этот частотный диапазон нужно узнать.

В данный момент в России встречаются следующие стандарты сотовой связи:

Поколение

Частотные диапазоны

Название стандарта

GSM-900, EGSM, GSM-E900

GSM-1800, DCS-1800

К сожалению, узнать, на какой частоте работает ваш оператор, уже не так легко. Разработчики операционных систем Android и iOS посчитали, что эта информация не пригодится обычным пользователям, и спрятали ее в специальное сервисное меню. Ниже мы расскажем, как вызвать скрытое меню и узнать частоту, используемую оператором. Но перед этим - еще один важный шаг!

Если ваш смартфон по умолчанию использует ту сеть, которую вы хотите усилить, дополнительных действий не требуется. Но бывают ситуации, когда вам необходимо определить частотный диапазон другой сети. Например, вы хотите узнать частоту 2G, а смартфон автоматически подключается к 3G. Другой пример: вам необходимо усилить голосовую связь, а ваш телефон подключен к 4G-сети, в которой доступен только мобильный интернет. Чтобы измерить нужный стандарт, принудительно переведите смартфон в соответствующий режим.

Для этого на устройствах Android перейдите в Настройки > Другие сети > Мобильные сети > Режим сети и выберите необходимый стандарт связи. В зависимости от модели смартфона и версии операционной системы путь к разделу Режим сети может незначительно отличаться.

Смартфоны Apple, к сожалению, не поддерживают ручное переключение режимов. Таким образом, пользователи iPhone могут определить частоту только того стандарта, в котором смартфон работает автоматически.

Как узнать частоту сотовой связи

Как мы уже сказали выше, чтобы получить информацию о частоте, на которой ваш смартфон подключен к базовой станции, необходимо зайти в специальное сервисное меню. На устройствах Android оно обычно называется Service Mode, на смартфонах Apple - Field Test. Чтобы вызвать соответствующий экран, достаточно набрать с телефона определенный номер.

Важно! В зависимости от модели устройства и версии операционной системы приведенные в этой статье инструкции могут не работать. В таком случае ввод кода ни к чему не приведет. Также на некоторых смартфонах меню может выглядеть иначе, а информация о сети находиться в одном из подменю. Возможно, вам придется поискать в подразделах меню прежде, чем вы найдете нужную страницу с информацией о мобильном соединении!

Перед тем, как производить тестирование частоты, отключите WiFi-соединение. В случае, если в вашем телефоне установлено две SIM-карты, рекомендуется извлечь ненужную карту и оставить только ту, которую необходимо протестировать. Так вы сможете избежать лишней путаницы и точно получите информацию о текущем соединении.

Как вызвать сервисное меню на Android

В зависимости от версии Android сервисное меню открывается с помощью одного из следующих кодов:

  • *#0011#
  • *#*#4636#*#*
  • *#*#197328640#*#*

После ввода последнего символа скрытое меню должно открыться автоматически, нажимать кнопку вызова не нужно. На смартфонах Samsung вы сразу попадете на экран с информацией о состоянии сети. На устройствах других производителей может потребоваться перейти в подраздел «Информация о телефоне» или другой, содержащий сведения о мобильном подключении. К сожалению, на некоторых моделях Android-смартфонов данное меню может быть вовсе недоступно.


На смартфонах Samsung для получения информации о сети достаточно набрать номер *#0011#


Для получения информации о сети на смартфонах Xiaomi необходимо набрать номер *#*#4636#*#*, перейти в раздел «Информация о телефоне» и прокрутить страницу вниз. На устройствах с двумя SIM-картами разделов «Информация о телефоне» будет два.

Как видите, скрытое меню предоставляет очень много технических данных. Большая часть этой информации нам не понадобится, а на что именно следует обратить внимание, мы расскажем чуть ниже.

Как вызвать сервисное меню на iPhone

На смартфонах Apple сервисное меню вызывается аналогичным образом, но с помощью другого кода. После ввода необходимо нажать кнопку вызова:

  • *3001#12345#*

Чтобы получить информацию о сотовом подключении, вам потребуется найти нужный пункт подменю. В зависимости от текущего стандарта связи пройдите:

  • для 2G: GSM Cell Environment > GSM Cell Info > Neighboring Cells > 0

  • для 3G: UMTS Cell Environment > Neighbor Cells > UMTS Set > 0

  • для 4G: Serving Cell Info

Определяем частоту 2G-сети (GSM)

Для определения частоты, на которой функционирует GSM-сеть, используется специальный радиочастотный номер канала - ARFCN. По сути, это идентификатор, указывающий, в каком радиочастотном диапазоне сейчас работает ваш смартфон. На странице сервисного меню идентификатор обычно указывается после обозначения ARFCN , RX , Rx Ch , Freq , BCCH или другой схожей аббревиатуры.

Реже смартфоны в режиме 2G показывают сразу название стандарта (например, GSM-900) или рабочую частоту. Если ваш смартфон отобразил название стандарта в готовом виде, считайте, что вам повезло. В противном случае определите, к какому стандарту относится указанный ARFCN, с помощью нижеприведенной таблицы.

2G-стандарт

Частотный диапазон

0–124
975–1023

Например, так выглядит определение частоты GSM на смартфонах Samsung (слева) и iPhone (справа):

Если смартфон показывает несколько значений ARFCN, перечисленных столбиком, то активная сеть, как правило, первая в списке.

Определяем частоту 3G-сети

Аналогичным образом дело обстоит с определением частоты в 3G-сетях. Здесь идентификатор канала называется по-другому - UARFCN. В отличие от 2G-сетей, значений UARFCN может быть указано два: одно, позволяющее определить канал приема данных (DL), и другое, указывающее на канал отправки (UL). Также может быть указано название стандарта или его специальный порядковый номер - так называемый «бэнд» (от англ. band).

3G-стандарт

Частотный диапазон

Таким образом, в сервисном меню вы можете обнаружить либо значение UARFCN, либо порядковый номер «бэнда»: например, Band 1. UARFCN обычно указывается после таких аббревиатур, как RX , CH DL и других. На iPhone идентификатор частоты 3G называется Downlink Frequency или dl_freq .

Если смартфон показывает несколько значений UARFCN, перечисленных столбиком, то активная сеть, как правило, первая в списке.

Приведем пример определения UARFCN на современных смартфонах Xiaomi (слева) и Samsung (справа). В данном случае используется частота 2100 МГц:

Определяем частоту 4G-сети

Аналогичным образом дело обстоит и с 4G-сетями. Здесь может быть указан «бэнд» или идентификатор канала - EARFCN. На iPhone определить частоту 4G проще всего по «бэнду», указанному в пункте Freq Band Indicator или freq_band_ind. Если смартфон показывает несколько значений EARFCN, перечисленных столбиком, то активная сеть, как правило, первая в списке.

4G-стандарт

Частотный диапазон

Обратите внимание, что в последнем приведенном стандарте не указаны различные значения EARFCN для отправки и приема. Это вовсе не случайно. Дело в том, что в стандарте LTE Band 38 прием и передача данных происходит в одном и том же частотном диапазоне, но попеременно (технология TDD). Для усиления этого стандарта может потребоваться специальный репитер.

Ниже показан пример определения EARFCN на смартфонах Xiaomi (слева) и последних версиях iPhone (справа).

На устройствах Android определить частоту 4G можно и проще, воспользовавшись бесплатным приложением CellMapper . CellMapper отображает информацию о сотовой сети, в том числе текущий «бэнд». К сожалению, с его помощью нельзя определить частоту 2G- или 3G-сети.

Всегда определяйте частоту в той точке, в которой планируете устанавливать внешнюю антенну системы усиления. Если оператор использует несколько частотных диапазонов одновременно, смартфон может на улице использовать один стандарт, а в помещении - другой. Связано это с тем, что более низкие частоты проникают в помещения лучше и, как правило, именно им электронные устройства отдают предпочтение.

Например, если ваш оператор предоставляет 4G-интернет одновременно в частотных диапазонах 800 и 2600 МГц, то внутри помещения смартфон может выбрать более медленный стандарт LTE800, а на улице переключиться на более быстрый LTE2600.

Кроме того, следует учитывать, что одновременное использование двух 4G-диапазонов открывает перед оператором возможность агрегации частот. Агрегация - функция сетей LTE-Advanced, при которой абонентские устройства используют несколько частотных диапазонов для достижения максимальной скорости. Сегодня эта технология лишь начинает внедряться операторами сотовой связи, но в обозримом будущем она может существенно повысить производительность мобильного интернета.

Если вы определили, что в вашем местоположении оператор связи работает одновременно в двух «бэндах», имеет смысл задуматься о приобретении двухдиапазонной системы усиления.

Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

GSM (Global System Mobile) – глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

GSM обеспечивает поддержку услуг:

  • Передачи данных GPRS
  • Передача речи
  • Передача коротких сообщений SMS
  • Передача факса

Кроме того, существуют дополнительные услуги:

  • Определение номера
  • Переадресация вызова
  • Ожидание и удержание вызова
  • Конференц-связь
  • Голосовая почта

Архитектура сети GSM

Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

Сеть GSM делится на две системы: SS (Switching System) – коммутационная подсистема, BSS (Base Station System) – система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

SS включает в себя:

  • MSC (Mobile Switching Center) – узел коммутации сети GSM
  • GMSC (Gate MSC) – коммутатор, который обрабатывает вызовы от внешних сетей
  • HLR (Home Location Register) – база данных домашних абонентов
  • VLR (Visitor Location Register) – база данных гостевых абонентов
  • AUC (Authentication Cetner) – центр аутентификации (проверки подлинности абонента)

BSS включает в себя:

  • BSC (Base Station Controller) – контроллер базовых станций
  • BTS (Base Transeiver Station) – приемо-передающая станция
  • MS (Mobile Station) – мобильная станция

Состав коммутационной подсистемы SS

MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
Хранящаяся информация в HLR включает в себя:

  • Идентификаторы (номера) абонента.
  • Дополнительные услуги, закрепленные за абонентом
  • Информацию о местоположении абонента, с точностью до номера MSC/VLR
  • Аутентификационную информацию абонента (триплеты)

HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC – центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

Состав подсистемы базовых станций BSS

BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

Географическое построение сетей GSM

Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

Частотный план GSM

GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

  • P-GSM900 890-915/935-960 MHz
  • E-GSM900 880-915/925-960 MHz
  • R-GSM900 890-925/935-970 MHz
  • R-GSM1800 1710-1785/1805-1880 MHz

В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.

Поддержите проект

Друзья, сайт Netcloud каждый день развивается благодаря вашей поддержке. Мы планируем запустить новые рубрики статей, а также некоторые полезные сервисы.

У вас есть возможность поддержать проект и внести любую сумму, которую посчитаете нужной.

Недостатки аналоговых сетей первого поколения , связанные с низкой пропускной способностью сети и слабой конфиденциальностью разговоров, подтолкнули разработчиков к созданию сетей второго поколения 2G , основанных на цифровых стандартах. По мере роста популярности мобильной связи разработчики всерьез занялись увеличением пропускной емкости стандартов и тотальной стандартизацией по всему миру. Унификация мобильных терминалов позволяет клиентам спокойно путешествовать по всей планете и всегда оставаться на связи благодаря автоматическому роумингу. К началу 90-х годов стало очевидно, что только цифровые способы передачи речи и управления мобильной связью позволят решить эти две задачи. Работы по созданию общемирового цифрового стандарта сотовой связи велись в Европе и в Америке.

Существуют четыре основных вида сетей второго поколения с возможностью организации сот радиусом до 20-30 км. Это американские сети D-AMPS и CDMA , японский стандарт JDC (Japan Digital Cell) и глобальный общеевропейский стандарт GSM . Таким первопроходцам рынка, как например D-AMPS, сегодня приходится очень тяжело. Чтобы выдерживать конкуренцию, им приходится снижать тарифы и предлагать услуги, которых первоначально данный стандарт не предполагал: автодозвон, автоматическое определение номера, конференцсвязь, голосовая почта, передача данных, а также доступ в сеть Internet.

Сохранив прежний размер сот и базовую инфраструктуру, новый стандарт CDMA (Code Division Multiple Access) увеличил количество одновременно звонящих абонентов в соте до 1000, а также уменьшил себестоимость телефонов, улучшил конфиденциальность разговоров и полностью устранил проблему двойников. Каждый телефон CDMA имеет свой идентификационный номер и для замены аппарата требуется обязательное участие сотового оператора. Список телефонных номеров и личный органайзер пользователя хранятся в памяти телефона, и при замене аппарата приходится перезаписывать всю информацию. Для повышения конфиденциальности разговоров в цифровых системах кодирование речи происходит путем сжатия информационного потока. Телефоны стандарта CDMA имеют небольшие размеры и низкий расход энергии. На сегодняшний день стандарт, получивший наибольшее распространение в Северной Америке и Корее, предлагает абонентам хорошее качество звука и наибольшую скорость передачи данных (14,4 кбит/с). Существуют операторы этого стандарта и в России, однако их количество невелико, из-за чего роуминг сильно ограничен.

Сотовые сети стандарта GSM (Global System for Mobile Communications) сегодня наиболее популярны. Этот цифровой стандарт мобильной связи был создан в Европе в 1991 году и очень быстро распространился по всему миру. Стандарт учитывает многолетний опыт эксплуатации сотовых сетей, рассчитан на массовое применение и допускает модификацию без нарушения базовых функций. Радиус соты сети GSM может достигать 35 км, а количество одновременных звонков – до 1000. Максимальная мощность мобильных телефонов находится в пределах 1 Вт, а в стационарных и автомобильных модификациях телефонов достигает 20 Вт. Мобильные терминалы GSM наиболее миниатюрны и имеют наибольший ресурс работы без подзарядки.

Для цифровых стандартов сотовой связи 2G характерно чистое звучание без помех, которое лишь немного искажает тембр и интонационный оттенок речи. При слабом сигнале или неустойчивой связи возможно незначительное «проглатывание» фрагментов слов. В моменты, когда абонент слушает собеседника, цифровые системы полностью отключают передатчик, чтобы не засорять эфир и экономить заряд аккумулятора. В это же время говорящий слышит в динамике искусственный "комфортный шум", чтобы не создавалось ощущение отсутствия связи. Подслушать разговоры в эфире GSM практически невозможно, так как используются сложные и закрытые алгоритмы шифрования, которые часто меняются и каждое соединение имеет свой ключ.

Существенно увеличило пропускную способность введение стандарта GSM 1800 , который расширил диапазон используемых частот, а соты сделал более мелкими. Опыт эксплуатации сетей GSM 1800 в крупнейших городах показал, что стандарт позволяет избежать перегрузок сети даже при тотальном использовании мобильной связи. GSM использует частоты 900 МГц и 1800 МГц во всем мире, а вот в США Федеральная комиссия по радиосвязи предоставила операторам небольшой диапазон в районе 1900 МГц, создав, таким образом, американский стандарт GSM 1900. В этом же диапазоне могут работать также операторы сетей CDMA и D-AMPS. Выпускаемые в настоящее время мобильные телефоны способны работать во всех трех GSM диапазонах.

В дальнейшем возникла острая потребность в создании нового стандарта мобильной связи, который смог бы обеспечить существенно большую скорость передачи информации и комфортную работу в Интернет. Задача была решена в виде GPRS -технологии, реализованной в форме надстройки над стандартом GSM и позволяющей достигать на прием скорости 40,2 кбит/с.

В телефонах стандарта GSM используется сменная SIM-карта (Subscribe Identity Module) , позволяющая оператору однозначно идентифицировать абонента, а также хранить в своей памяти 255 номеров абонентов. При перестановке SIM-карты из одного аппарата в другой автоматически переносится собственный телефонный номер и телефонная книжка.

Операторы сетей GSM предоставляют широкий спектр услуг:

  • голосовые соединения;
  • текстовые сообщения SMS (Short Message Service);
  • выход в Internet непосредственно с телефона при помощи WAP-браузера;
  • передача информации и факсов (скорость 9,6 кбит/с или до 384 кбит/сек при поддержке технологии EDGE);
  • конференцсвязь;
  • переадресация звонков;
  • информационные услуги (погода, цены, адреса, телефоны);
  • формирование групп пользователей и др.

Мобильные сети GSM состоят из системы коммутации – Network Switching System (NSS) , системы базовых станций - Base Station System (BSS) и телефонов абонентов (MS) .

Система NSS служит для обслуживания вызовов и коммутации соединений, а также предоставление услуг абоненту. Система BSS выполняет все функции радиоинтерфейса.

NSS состоит из :

  • центра коммутации мобильной связи (MSC);
  • домашнего регистра местоположения (HLR);
  • визитного регистра местоположения (VLR);
  • центра аутентификации (AUC);
  • регистра идентификации абонентского оборудования (EIR).

BSS включает в себя функциональные блоки :

  • контроллер базовых станций (BSC);
  • базовую станцию (BTS).

Центр коммутации мобильной связи (MSC) является главным элементом сети GSM и осуществляет контроль за BTS и BSC в своей зоне обслуживания. MSC устанавливает соединения между абонентами сети, а также осуществляет соединения с другими мобильными и стационарными сетями.

Домашний регистр местоположения (HLR) хранит информацию об абонентах (перечень подключенных услуг, текущее состояние, местоположение и др.), которые относятся к данному MSC.

Визитный регистр местоположения (VLR) содержит информацию об активных абонентах в зоне обслуживания конкретного MSC. К ней относятся данные о домашних абонентах данного MSC и абонентах, для которых этот MSC является гостевым. Источником информации для VLR является HLR.

Центр аутентификации (AUC) служит для идентификации абонентов и предотвращения несанкционированного доступа в сеть. При включении телефона, совершении звонка, отправке SMS и т.п. MSC в обязательном порядке выполняет процедуру аутентификации на основании информации полученной из AUC и MS.

Регистр идентификации абонентского оборудования (EIR) представляет собой базу данных с информацией об идентификационных номерах мобильных терминалов GSM, которая может быть использована для блокировки украденных телефонов. EIR не является обязательным элементом и присутствует не во всех сетях.

Контроллер базовых станций (BSC) представляет собой коммутатор большой емкости, который предназначен для управления всеми функциями радиоканалов в сети GSM (хэндовер MS, назначение радиоканала и получение информации о конфигурации сот). Под управлением каждого MSC может находиться несколько BSC.

Базовая станция (BTS) управляет радиосвязью с телефоном абонента. BTS состоит из приемо-передатчиков и антенн, которые требуются для обслуживания каждой соты.

В сетях GSM с технологией пакетной передаче данных GPRS дополнительно используются блоки:

  • Узел обслуживания абонентов GPRS (SGSN), который представляет собой маршрутизатор с расширенными функциями установления сессии пакетной передачи данных, маршрутизации пакетов и начисления платы за предоставленные услуги. Стоит отметить, что пакетные данные передаются от подсистемы базовых станций в сторону SGSN, а не в сторону MSC.
  • Шлюзовой узел GPRS (GGSN) часто конструктивно объединяется в одном устройстве вместе с SGSN и представляет собой шлюз сети. Если пакеты данных направляются за пределы сети оператора, то именно GGSN выполняет эту функцию.

Стандарты сотовой связи второго поколения нашли широкое распространение не только на территории России, но и в других странах. Самым известным стандартом 2G является GSM (Global System for Mobile Communications - Глобальная система мобильной связи). Около 80% сетей сотовой связи по всему миру построены по этому стандарту. Сети GSM используются 3 миллиардами людей более чем в 212 странах мира. Такое широкое распространение позволяет использовать международный между операторами сотовой связи, что дает возможность использовать абоненту свой телефон практически в любом уголке Земли. Причем именно возможность (в том числе и международного) является главной отличительной чертой стандарта GSM от .

Разработка стандарта GSM началась еще в 1982 году организацией по стандартизации . В 1991 году в Финляндии была введена в эксплуатацию первая в мире сеть GSM. Уже к концу 1993 года число абонентов, использующих этот стандарт, перевалило за миллион. К этому времени сети GSM были развернуты в 73 странах мира.

Сети стандарта GSM позволяют предоставлять широкий перечень услуг:

  • Голосовые соединения
  • Услуги (до 384 кбит/сек благодаря технологии )
  • Передача коротких текстовых сообщений ()
  • Передача факсов
  • и мн. др.
  • Благодаря этому GSM завоевал прочные позиции на рынке сотовой связи. Причем, можно с уверенность сказать, что на ближайшие несколько лет этот стандарт будет лидирующим.

    Итак, рассмотрим основные элементы, входящие в состав системы GSM:

    Сеть GSM делится на 2 системы. Каждая из этих систем включает в себя ряд функциональных устройств, которые, в свою очередь являются компонентами сети мобильной радиосвязи.

    Данными системами являются:

  • Система коммутации – Network Switching System ()
  • Система базовых станций - Base Station System ()
  • Визитный регистр местоположения ()

    Центр аутентификации ()

    Регистр идентификации абонентского оборудования ()

    – это база данных, содержащая информацию о идентификационных номерах мобильных телефонов GSM. Данная информация необходима для осуществления блокировки краденых трубок. не является обязательным элементом сети. В мире существует лишь несколько операторов, которые внедрили его в своей сети.


    © 2024
    zane-host.ru - Программы. Компьютеры. Сетевое оборудование. Оргтехника