19.08.2023

Два устройства в одном irq что делать. Системные прерывания – что это? Описание, причины и методы устранения. Как решать и что делать


  • Алиева Елена Викторовна , студент
  • Уфимский государственный авиационный технический университет
  • КОНТРОЛЛЕР ПРЕРЫВАНИЙ
  • КОНТРОЛЛЕР
  • АППАРАТНЫЕ ПРЕРЫВАНИ
  • ПРЕРЫВАНИЕ

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Механизм прерываний поддерживается на аппаратном уровне. Аппаратные прерывания возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени. Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. Прерывания имеют определённый приоритет, который позволяет контроллеру прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и переферийных устройств, генерирующие прерывания.

  • Автоматизация документооборота склада производственного предприятия
  • Calls-технологии, особенности, применение и эффективность
  • Разработка модели информационной системы юридического отдела по сопровождению и заключению договоров предприятия

Введение

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Т.е. это процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возвратом к прерванной программе. Нажимая клавишу на клавиатуре, мы инициируем немедленный вызов программы, которая распознает клавишу, заносит ее код в буфер клавиатуры, из которого он считывается другой программой. Т.е. на некоторое время микропроцессор прерывает выполнение текущей программы и переключается на программу обработки прерывания, так называемый обработчик прерывания. После того, как обработчик прерывания завершит свою работу, прерванная программа продолжит выполнение с точки, где было приостановлено ее выполнение. Адрес программы-обработчика прерывания вычисляется по таблице векторов прерываний.

Механизм прерываний поддерживается на аппаратном уровне. В зависимости от источника, прерывания делятся на:

  • аппаратные - возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени;
  • программные - вызываются искусственно с помощью соответствующей команды из программы (int), предназначены для выполнения некоторых действий операционной системы, являются синхронными;
  • исключения - являются реакцией микропроцессора на нестандартную ситуацию, возникшую внутри микропроцессора во время выполнения некоторой команды программы (деление на ноль, прерывание по флагу TF (трассировка)) .

Аппаратные средства системы прерываний

Система прерываний - это совокупность программных и аппаратных средств, реализующих механизм прерываний.

К аппаратным средствам системы прерываний относятся:

  • выводы микропроцессора - на них формируются сигналы, извещающие микропроцессор либо о том, что некоторое внешнее устройство «просит уделить ему внимание» (INTR), либо о том, что требуется безотлагательная обработка некоторого события или катастрофическая ошибка (NMI)
  • INTR - вывод для входного сигнала запроса на прерывание,
  • NMI - вывод для входного сигнала немаскируемого прерывания
  • INTA - вывод для выходного сигнала подтверждения получения сигнала прерывания микропроцессором (этот сигнал поступает на одноименный вход микросхемы контроллера 8259А;
  • программируемый контроллер прерываний 8259А (предназначен для фиксирования сигналов прерываний от восьми различных внешних устройств; он выполнен в виде микросхемы; обычно используют две последовательно соединенные микросхемы, поэтому кол-во возможных источников внешних прерываний до 15 плюс одно немаскируемое прерываний; именно он формирует номер вектора прерывания и выдает его шину данных);
  • внешние устройства (таймер, клавиатура, магнитные диски и т.п.)

Обработка прерываний

Прерывание вызывает ряд событий, которые происходят как в аппаратном, так и в программном обеспечении. На рис. 1 показана типичная последовательность этих событий.

После завершения работы устройства ввода-вывода происходит следующее:

  • Устройство посылает процессору сигнал прерывания.
  • Перед тем как ответить на прерывание, процессор должен завершить исполнение текущей команды (см. рис. 1).
  • Процессор производит проверку наличия прерывания, обнаруживает его и посылает устройству, приславшему это прерывание, уведомляющий сигнал об успешном приеме. Этот сигнал позволяет устройству снять свой сигнал прерывания.
Рисунок 1. Временная диаграмма программы: медленный ввод-вывод

Теперь процессору нужно подготовиться к передаче управления обработчику прерываний. Сначала необходимо сохранить всю важную информацию, чтобы в дальнейшем можно было вернуться к тому месту текущей программы, где она была приостановлена. Минимальная требуемая информация - это слово состояния программы и адрес очередной выполняемой команды, который находится в программном счетчике. Эти данные заносятся в системный управляющий стек.

Рисунок 2. Обработка простого прерывания

Далее в программный счетчик процессора загружается адрес входа программы обработки прерываний, которая отвечает за обработку данного прерывания. В зависимости от архитектуры компьютера и устройства операционной системы может существовать как одна программа для обработки всех прерываний, так может быть и своя программа обработки для каждого устройства и каждого типа прерываний. Если для обработки прерываний имеется несколько программ, то процессор должен определить, к какой из них следует обратиться. Эта информация может содержаться в первоначальном сигнале прерывания; в противном случае для получения необходимой информации процессор должен по очереди опросить все устройства, чтобы определить, какое из них отправило прерывание.

Как только в программный счетчик загружается новое значение, процессор переходит к следующему циклу команды, приступая к ее извлечению из памяти. Так как команда извлекается из ячейки, номер которой задается содержимым программного счетчика, управление переходит к программе обработки прерываний. Исполнение этой программы влечет за собой следующие операции.

Содержимое программного счетчика и слово состояния прерываемой программы уже хранятся в системном стеке. Однако это еще не вся информация, имеющая отношение к состоянию исполняемой программы. Например, нужно сохранить содержимое регистров процессора, так как эти регистры могут понадобиться обработчику прерываний. Поэтому необходимо сохранить всю информацию о состоянии программы. Обычно обработчик прерываний начинает свою работу с записи в стек содержимого всех регистров. Другая информация, которая должна быть сохранена, обсуждается в главе 3, "Описание процессов и управление ими". На рис. показан простой пример, в котором программа пользователя прерывается после выполнения команды из ячейки N. Содержимое всех регистров, а также адрес следующей команды (N+1), в сумме составляющие М слов, заносятся в стек. Указатель стека при этом обновляется, указывая на новую вершину стека. Обновляется и программный счетчик, указывая на начало программы обработки прерывания.

Теперь обработчик прерываний может начать свою работу. В процесс обработки прерывания входит проверка информации состояния, имеющая отношение к операциям ввода-вывода или другим событиям, вызвавшим прерывание. Сюда может также входить пересылка устройствам ввода-вывода дополнительных инструкций или уведомляющих сообщений.

После завершения обработки прерываний из стека извлекаются сохраненные ранее значения, которые вновь заносятся в регистры, возобновляя таким образом то состояние, в котором они пребывали до прерывания.

Последний этап - восстановление из стека слова состояния программы и содержимого программного счетчика. В результате следующей будет выполняться команда прерванной программы.

Из-за того, что прерывание не является подпрограммой, вызываемой из программы, для полного восстановления важно сохранить всю информацию состояния прерываемой программы. Однако прерывание может произойти в любой момент и в любом месте программы пользователя. Это событие непредсказуемо .

Контроллер прерываний

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. По аналогии функции контроллера прерываний можно сравнить с секретарём какого–нибудь начальника. Секретарь должен решить, кого из посетителей допустить к боссу в первую очередь, а кого и потом, исходя из приоритетов, отдаваемых боссом и статуса самого посетителя. Так и в компьютерной системе, возможна такая ситуация, когда несколько переферийных устройств послали сигнал прерывания или запрос на прерывание. В компьютерной литературе этот сигнал обозначается IRQ (Interrupt Request).

Как уже выше говорилось, прерывания имеют определённый приоритет, который позволяет контроллеры прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и периферийных устройств, генерирующие прерывания. Вот эти устройства:
–IRQ 0, системный таймер; –IRQ 1, клавиатура; –IRQ 2, исползуется для запросов устройств, подключенных каскадом; –IRQ 8, часы реального времени; –IRQ 9, зарезервировано; –IRQ 10, зарезервировано; –IRQ 11, зарезервировано; –IRQ 12, ps/2–мышь; –IRQ 13, сопроцессор; –IRQ 14, контроллер «жёсткого» диска; –IRQ 15, зарезервировано; –IRQ 3, порты COM2,COM4; –IRQ 4, порты COM1,COM3; –IRQ 5, порт LPT2; –IRQ 6, контроллер дисковода; –IRQ 7, порт LPT1,принтер.

Здесь сигналы приведены в порядке убывания приоритетов. Можно заметить, что после IRQ 2, следует IRQ 8. Дело в том, что в своё время контроллер прерываний состоял из двух микросхем, одна была подключена к другой. Вот эта вторая микросхема и подключается к линии IRQ 2, образуя каскад. Она обслуживает линии IRQ8–IRQ 15. А затем следуют линии первой микросхемы .

Работа контроллера прерывания

Работа контроллеов прерываний рассматривается на основе микросхем фирмы Intel 8259A, которые применялись в теперь уже очень старых компьютерах с процессорами до 386 серии. В этих компьютерах обычно было 2 микросхемы 8259A, подключенных каскадно, то–есть одна к другой. Одна из микросхем, подключенная по линии запроса на прерывание непосредственно к процессору является ведущей или мастером. Остальные,подключаются к ведущей через аналогичные выводы, называются ведомыми.


Рисунок 3. Схема подключения контроллеров прерываний и их взаимодействие с центральным процессором

На рисунке 3 изображена схема подключения контроллеров прерываний и их взаимодействие с центральным процессором. Сигналы на прерывание от переферийных устройств или ведомых контроллеров поступают на входы IR0–IR7 ведущего контроллера. Внутренняя логика ведущего контроллера обрабатывает поступившие запросы с точки зрения приоритета. Если приоритет запроса устройства достаточен, то на выходе INT контроллера вырабатывается сигнал, поступающий на вход INTR процессора. В противном случае, запрос блокируется.

Если процессор разрешает прерывания, то после завершения выполнения текущей команды, он вырабатывает по линии INTA последовательность сигналов, которая переводит ведомый контроллер в состояние невосприимчивости к поступающим новым запросам на прерывание, а кроме того, на линию данных выводится информация из внутренних регистров контроллера по которой процессор распознаёт тип прерывания.

Разрешение на прерывание процессор передаёт контроллеру прерываний через контроллер шины. Сигнал RD предназначен для того, чтобы контроллер прерываний поместил на шину данных содержимое внутренних регистров. По сигналу WR контроллер прерываний, наоборот, принимает данные с одноимённой шины и записывает их во внутренние регистры. Соответственно, это влияет на режим работы контроллера прерываний.

Вход CS подключается к шине адреса и по этому сигналу происходит идентификация конкретного контролллера прерываний. Вход A0 указывает на порт контроллера прерываний в пространстве ввода–вывода.

Входы IR0–IR7 предназначены для приёма запросов на прерывание от переферийных устройств и ведомых контроллеров.

Выходы CAS0–CAS2 предназначены для идентификации конкретного ведомого контроллера .

В статье рассмотрены аппаратные прерывания и устройство, функции, работу контроллера прерываний. Данный контроллер прерываний появился ещё в первых PC–совместимых компьютерах. С тех пор, и процессоры, и сам компьютер во многом изменились, хотя некоторые моменты остались. Поэтому, для того, чтобы было понятней и была рассмотрена организация контроллера прерываний 8295A.

На приведенной выше схеме показаны сигналов приходящие не только на ведомый и ведущий контроллеры прерываний, но и на остальные ведомые. Однако на вашем компьютере или ноутбуке на самом деле 2 контроллера прерываний, как выше указывалось: ведущий и ведомый. Но можно создавать свои компьютерные системы, используя таким образом до 64 ведомых контроллеров прерываний.

В современных компьютерах уже давно функции контроллера прерываний выполняют не микросхемы 8259A, а южный мост. Однако, для всех программ и устройств всё остаётся по–прежнему. Более того, контроллер прерываний можно программировать, и обращаться к внутренним регистрам и портам необходимо точно также, как и к контроллеру 8259A .

Заключение

В данной работе были рассмотрены прерывания, а именно аппаратные средства обработки прерываний и принцип обработки прерываний. Также рассмотрены контроллеры прерываний и принцип их работы.

Прерывание означает временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы. Механизм прерываний поддерживается на аппаратном уровне. Аппаратные прерывания возникают как реакция микропроцессора на физический сигнал от некоторого устройства (клавиатура, системные часы, клавиатура, жесткий диск и т.д.), по времени возникновения эти прерывания асинхронны, т.е. происходят в случайные моменты времени.

Контроллер прерываний предназначен для обработки и арбитража поступающих запросов на обслуживание к центральному процессору от переферийных устройств. Прерывания имеют определённый приоритет, который позволяет контроллеру прерываний отдавать предпочтение в данный момент времени одному устройству, а не другому. В современном компьютере существует до 16 внешних и переферийных устройств, генерирующие прерывания.

Список литературы

  1. Лекция. Прерывания. Эл. Ресурс. http://hromatron.narod.ru/_lekcii/prerivania_lekcia_g2013.htm
  2. Системные прерывания | Аппаратное прерывание | Обработка прерываний http://life-prog.ru/view_os.php?id=16
  3. Контроллер прерываний. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php,
  4. Прерывания. Контроллер прерываний. Устройство, функции, работа. Эл. Ресурс http://sdelaycomputersam.ru/Controller_irq.php
  5. Структура и инициализация контроллера прерываний Intel 8259A Эл.ресурс https://dev64.wordpress.com/2012/05/30/8259-programming/

Распространенной проблемой операционной системы Windows любой редакции является загрузка ресурсов компьютера «внутренними» процессами. Одним из таких процессов является системное прерывание, которое может серьезно нагружать ресурсы компьютера, что будет отображаться в «Диспетчере задач». Наиболее часто приходится сталкиваться с ситуацией, когда системное прерывание грузит процессор, из-за чего компьютер серьезно теряет в производительности. В рамках данной статьи мы рассмотрим, почему это происходит, а также можно ли отключить системные прерывания в Windows.

Системные прерывания: что это за процесс

Процесс «Системные прерывания» по умолчанию в операционной системе Windows запущен постоянно, но при обычной работе он не должен нагружать компоненты системы более чем на 5%. Если данный процесс более серьезно воздействует на ресурсы компьютера, это говорит о наличии аппаратной проблемы, а именно о нарушении в работе одного из компонентов компьютера.

Когда «Системные прерывания» грузят процессор, это может сигнализировать о неполадках в работе видеокарты, материнской платы, оперативной памяти или другого элемента системного блока. Центральный процессор старается дополнить недостающую мощность, возникшую из-за неправильной работы компонента, при помощи собственных ресурсов, о чем свидетельствует процесс «Системные прерывания». Чаще всего проблема неправильной работы компонентов компьютера связана с полной или частичной несовместимостью запущенной программы (или игры) с драйверами компонентов компьютера.

Как отключить системные прерывания

Как было отмечено выше, системные прерывания являются не более чем указателем, что со стороны Windows идет дополнительное обращение к ресурсам центрального процессора. Отключить системные прерывания, чтобы повысить производительность компьютера, не получится, и нужно искать проблему в работе компонентов PC. Для этого удобно использовать приложение DPC Latency Checker, которое можно загрузить бесплатно в интернете с сайта разработчиков. Программа позволяет определить неисправные компоненты компьютера.

Чтобы провести диагностику системы приложением DPC Latency Checker, запустите его и подождите. Некоторое время уйдет на проверку компьютера, после чего пользователь увидит на графике, если имеются проблемы в работе компонентов системы. Также приложение укажет на возможные ошибки и посоветует их поискать, отключая устройства.

Для этого перейдите в «Диспетчер устройств», нажав правой кнопкой мыши на «Пуск» и выбрав соответствующий пункт, и начните по одному отключать устройства. После каждого отключения проверяйте в «Диспетчере задач» и приложении DPC Latency Checker, устранена ли проблемы с загрузкой процессора системными прерываниями. Если проблема сохранилась, включайте устройство обратно и переходите к следующему.

Важно: В процессе отключения компонентов в «Диспетчере устройств», не отключайте «Компьютер», «Процессор» и «Системные устройства», иначе это приведет к экстренной перезагрузке компьютера.

Когда будет найдено устройство, при отключении которого нагрузка на процессор снизится до нормального состояния, обновите драйвера для этого компонента с официального сайта разработчиков.

Обратите внимание: Если были предприняты попытки отключить все компоненты системы, но процесс «Системные прерывания» продолжает нагружать систему, попробуйте обновить драйвера для процессора.

В ситуации, когда советы, приведенные выше, не помогают справиться с проблемой загрузки процессора системными прерываниями, можно опробовать еще следующие способы исправления ситуации:

Стоит отметить, что отключать системные прерывания через «Диспетчер задач» не следует, это приведет к сбою системы, но не решит проблему.

Здесь мы разберем такие важные темы, как: обработка прерываний, векторы прерываний, программные прерывания, IRQ , в общем поговорим на темы прерывания.

Идея прерывания была предложена в середине 50-х годов и основная цель введения прерываний – реализация синхронного режима работы и реализация параллельной работы отдельных устройств ЭВМ.

Прерывания и обработка прерываний зависят от типа ЭВМ, поэтому их реализацию относят к машинно-зависимым свойствам операционных систем.

Прерывание (interrupt) – это сигнал, заставляющий ЭВМ менять обычный порядок выполнения команд процессором.

Возникновение подобных сигналов обусловлено такими событиями , как:

  • завершение операций ввода-вывода.
  • истечение заранее заданного интервала времени.
  • попытка деления на нуль.
  • сбой в работе аппаратного устройства и др.

Обработка прерывания

С каждым прерыванием связывают число, называемое номером типа прерывания или просто номером прерывания . Система умеет распознавать, какое прерывание, с каким номером оно произошло, и запускает соответствующую этому номеру программу обработки прерывания. Таким образом, при поступлении сигнала на прерывание происходит принудительная передача управления от выполняемой программы к системе, а через нее — к обработчику прерываний.

Например прерывание с номером 9 — прерывание от клавиатуры, которое генерируется при нажатии и при отжатии клавиши. Используется для чтения данных с клавиатуры. Обозначается в ОС как IRQ 1, где IRQ – обозначение прерывания, а 1 – приоритет прерывания. Данные о запросах на прерывание можно проанализировать в диспетчере устройств:

Обработчик прерываний – программа обработки прерывания, являющаяся частью ОС, предназначенная для выполнения ответных действий на условие, вызвавшее прерывание.

Предположим, что в момент поступления сигнала прерывания от некоторого источника программа А находится в решении. В результате управление автоматически передается обработчику прерываний. После завершения обработки управление может быть снова передано в ту точку программы А, где ее выполнение было прервано:

Векторы прерываний

Адреса программ, соответствующих различным прерываниям, собраны в таблицу, которая называется таблицей векторов прерываний .

Для микропроцессора требуется простой способ определения местоположения программы обработки прерывания и это осуществляется путем использования таблицы векторов прерываний .

Таблица векторов прерываний занимает первый килобайт оперативной памяти — адреса от 0000:0000 до 0000:03FF. Таблица состоит из 256 элементов — FAR-адресов обработчиков прерываний. Эти элементы называются векторами прерываний . В первом слове элемента таблицы записано смещение, а во втором — адрес сегмента обработчика прерывания. Векторами являются просто полные адреса памяти программы (в сегментированной форме), которая должна быть активизирована в случае возникновения прерывания.

Прерыванию с номером 0 соответствует адрес 0000:0000, прерыванию с номером 1 — 0000:0004 и т.д. Адрес такой состоит из пары 2-байтовых слов, поэтому каждый из векторов занимает четыре байта.

Можно просмотреть таблицу векторов прерываний в компьютере, если воспользоваться программой DEBUG. Используйте команду D для вывода содержимого начала памяти: D 0:0. Программа DEBUG покажет вам первые 128 байтов или 32 вектора, которые могут иметь вид наподобие следующего:

0000:0000 E8 4E 9A 01 00 00 00 00-C3 E2 00 F0 00 00 00 00
0000:0010 F0 01 70 00 54 FF 00 F0-05 18 00 F0 05 18 00 F0
0000:0020 2C 08 51 17 D0 0A 51 17-AD 08 54 08 E8 05 01 2F
0000:0030 FA 05 01 2F 05 18 00 F0-57 EF 00 F0 F0 01 70 00
0000:0040 90 13 C7 13 4D F8 00 F0-41 F8 00 F0 3E 0A 51 17
0000:0050 5C 00 B7 25 59 F8 00 F0-E2 0A 51 17 9C 00 B7 25
0000:0060 00 00 00 F6 8E 00 DE 09-6E FE 00 F0 F2 00 7B 09
0000:0070 27 08 51 17 A4 F0 00 F0-22 05 00 00 00 00 00 F0

Векторы хранятся как «слова наоборот»: сначала смещение, а потом сегмент. Например, первые четыре байта, которые программа DEBUG показала выше (E8 4E 9A 01) можно преобразовать в сегментированный адрес 019A:4EE8.

Можно встретить три вида адресов в таблице векторов . Это могут быть адреса, указывающие на ROM-BIOS, которые можно идентифицировать шестнадцатеричной цифрой F, которая предшествует номеру сегмента. Это могут быть адреса, которые указывают на главную память (как в примере: 019A:4EE8). Эти адреса могут указывать на подпрограммы ДОС или на резидентную программу (например, SideKick или Prokey), либо они могут указывать на саму программу DEBUG (поскольку DEBUG должна временно управлять прерыванием). Также векторы могут состоять из одних нулей, когда прерывание с данным номером не обрабатывается в текущий момент.

Инициализация таблицы происходит частично BIOS после тестирования аппаратуры и перед началом загрузки операционной системой, частично при загрузке операционной системы.

Ниже приведено назначение некоторых векторов:

Описание
0 Ошибка деления. Вызывается автоматически после выполнения команд DIV или IDIV, если в результате деления происходит переполнение (например, при делении на 0).
2 Аппаратное немаскируемое прерывание. Это прерывание может использоваться по-разному в разных машинах. Обычно вырабатывается при ошибке четности в оперативной памяти и при запросе прерывания от сопроцессора.
5 Печать копии экрана. Генерируется при нажатии на клавиатуре клавиши PrtScr. Обычно используется для печати образа экрана.
8 IRQ0 — прерывание интервального таймера, возникает 18,2 раза в секунду.
9 IRQ1 — прерывание от клавиатуры. Генерируется при нажатии и при отжатии клавиши. Используется для чтения данных от клавиатуры.
A IRQ2 — используется для каскадирования аппаратных прерываний в машинах класса AT
B IRQ3 — прерывание асинхронного порта COM2.
C IRQ4 — прерывание асинхронного порта COM1.
D IRQ5 — прерывание от контроллера жесткого диска для XT.
E IRQ6 — прерывание генерируется контроллером флоппи-диска после завершения операции.
F IRQ7 — прерывание принтера. Генерируется принтером, когда он готов к выполнению очередной операции. Многие адаптеры принтера не используют это прерывание.
10 Обслуживание видеоадаптера.
11 Определение конфигурации устройств в системе.
12 Определение размера оперативной памяти в системе.
13 Обслуживание дисковой системы.
14 Последовательный ввод/вывод.
1A Обслуживание часов.
1B Обработчик прерывания Ctrl-Break.
70 IRQ8 — прерывание от часов реального времени.
71 IRQ9 — прерывание от контроллера EGA.
75 IRQ13 — прерывание от математического сопроцессора.
76 IRQ14 — прерывание от контроллера жесткого диска.
77 IRQ15 — зарезервировано.

IRQ0 — IRQ15 — это аппаратные прерывания.

Механизм обработки прерываний

При обработке каждого прерывания должна выполняться следующая последовательность действий:

  • Восприятие запроса на прерывание: прием сигнала и идентификация прерывания.
  • Запоминание состояния прерванного процесса: определяется значением счетчика команд (адресом следующей команды) и содержимым регистров процессора.
  • Передача управления прерывающей программе (в счетчик команд заносится начальный адрес подпрограммы обработки прерываний, а в соответствующие регистры – информация из слова состояния процессора).
  • Обработка прерывания.
  • Восстановление прерванного процесса и возврат в прерванную программу.

Главные функции механизма прерывания:

  1. распознавание или классификация прерываний.
  2. передача управления соответственно обработчику прерываний.
  3. корректное возвращение к прерванной программе (перед передачей управления обработчику прерываний содержимое регистров процессора запоминается либо в памяти с прямым доступом либо в системном стеке).

Типы прерываний

Прерывания, возникающие при работе вычислительной системы, можно разделить на 4 группы:

Аппаратные прерывания вызываются физическими устройствами и возникают по отношению к программе асинхронно, т.е. в общем случае невозможно предсказать, когда и по какой причине программа будет прервана.

Аппаратные прерывания не координируются c работой программного обеспечения. Когда вызывается прерывание, то процессор оставляет свою работу, выполняет прерывание, a затем возвращается на прежнее место.

Внешние прерывания возникают по сигналу какого-либо внешнего устройства например:

  • Прерывание, которое информирует систему о том, что требуемый сектор диска уже прочитан, его содержимое доступно программе.
  • Прерывание, которое информирует систему о том, что завершилась печать символа на принтере и необходимо выдать следующий символ.
  • Прерывания по нарушению питания.
  • Нормальное завершение некоторой операции ввода-вывода (нажатие клавиши на клавиатуре).
  • Прерывание по таймеру.

Прерывание по таймеру вызывается интервальным таймером. Этот таймер содержит регистр, которому может быть присвоено определенное начальное значение посредством специальной привилегированной команды. Значение этого регистра автоматически уменьшается на 1 по истечении каждой миллисекунды времени. Когда это значение становятся равным нулю, происходит прерывание по таймеру. Подобный интервальный таймер используется операционной системой для определения времени, в течение которого программа пользователя может оставаться под управлением машины.

Маскируемые и немаскируемые внешние прерывания

Существуют два специальных внешних сигнала среди входных сигналов процессора, при помощи которых можно прервать выполнение текущей программы и тем самым переключить работу центрального процессора. Это сигналы NMI (Non Mascable Interrupt, немаскируемое прерывани ) INTR (interrupt request, запрос на прерывание ).

Соответственно внешние прерывания подразделяются на два вида: немаскируемые и маскируемые.

Часто при выполнении критических участков программ, для того чтобы гарантировать выполнение определенной последовательности команд целиком, приходится запрещать прерывания (т.е. сделать систему нечувствительной ко всем или отдельным прерываниям). Это можно сделать командой CLI. Ее нужно поместить в начало критической последовательности команд, а в конце расположить команду STI, разрешающую процессору воспринимать прерывания. Команда CLI запрещает только маскируемые прерывания, немаскируемые всегда обрабатываются процессором.

Таким образом, наличие сигнала прерывания не обязательно должно вызывать прерывание исполняющейся программы. Процессор может обладать средствами защиты от прерываний: отключение системы прерываний, маскирование (запрет) отдельных сигналов прерываний. Прерывания, которые замаскировать нельзя — это немаскируемые прерывания.

Внутренние прерывания вызываются событиями, которые связаны с работой процессора и являются синхронными с его операциями, а именно прерывание происходит, когда:

  • при нарушении адресации (в адресной части выполняемой команды указан запрещенный или несуществующий адрес, обращение к отсутствующему сегменту или странице при организации механизмов виртуальной памяти);
  • при наличии в поле кода не задействованной двоичной комбинации.
  • при делении на нуль.
  • при переполнении или исчезновении порядка.
  • при обнаружении ошибок четности, ошибок в работе различных устройств аппаратуры средствами контроля.

Программные прерывания

Программы могут сами вызывать прерывания с заданным номером. Для этого они используют команду INT. По этой команде процессор осуществляет практически те же действия, что и при обычных прерываниях, но только это происходит в предсказуемой точке программы – там, где программист поместил данную команду. Поэтому программные прерывания не являются асинхронными (программа «знает», когда она вызывает прерывание).

Программные прерывания в прямом смысле прерываниями не являются, поскольку представляют собой лишь специфический способ вызова процедур — не по адресу, а по номеру в таблице.

Механизм программных прерываний был специально введен для того, чтобы:

  1. переключение на системные программные модули происходило не просто как переход в подпрограмму, а точно таким же образом, как и обычные прерывания. Этим обеспечивается автоматическое переключение процессора в привилегированный режим с возможностью исполнения любых команд.
  2. использование программных прерываний приводит к более компактному коду программ по сравнению с использованием стандартных команд выполнения процедур.

Пример (программные прерывания):

  • привилегированная команда в режиме пользователя.
  • адрес вне диапазона.
  • нарушение защиты памяти.
  • арифметическое переполнение, отсутствует страница.
  • нарушение защиты сегмента.
  • выход за границу сегмента.

В упрощенном виде схему обработки различных видов прерываний можно представить следующим образом:

КП – контроллер прерываний, имеет несколько уровней (линий) для подключения контроллеров устройств (на схеме обозначены КУ). Возможно каскадное подключение контролеров, когда на один из его входов подключается еще одни контроллер прерываний. ЦП – центральный процессор.

Аппаратные прерывания вырабатываются устройствами компьютера, когда возникает необходимость их обслуживания. В отличие от программных прерываний, вызываемых запланировано самой прикладной программой, аппаратные прерывания всегда происходят асинхронно по отношению к выполняющимся программам. Кроме того, может возникнуть одновременно несколько прерываний. Выбор одного из них для обработки осуществляется на основе приоритетов, приписанных каждому типу прерывания.

Каждому прерыванию назначается свой уникальный приоритет. Если происходит одновременно несколько прерываний, то система отдает предпочтение самому высокоприоритетному, откладывая на время обработку остальных прерываний.

В случае о прерывании самой программы обработки прерывания говорят о вложенном прерывании . Уровни приоритетов обозначаются сокращенно IRQ0 — IRQ15 или IRQ0 – IRQ23 (в зависимости от микросхемой реализации).

Пpepывaнию вpeмeни cутoк дан мaкcимaльный пpиopитeт, пocкoльку ecли oнo будет пocтoяннo тepятьcя, то будут нeвepными пoкaзaния cиcтeмныx чacoв. Пpepывaниe от клaвиaтуpы вызывaeтcя при нaжaтии или oтпуcкaнии клавиши; oнo вызывaeт цепь coбытий, кoтopaя oбычнo зaкaнчивaeтcя тем, что код клавиши пoмeщaeтcя в буфep клaвиaтуpы (oткудa он зaтeм мoжeт быть пoлучeн пpoгpaммными пpepывaниями).

Ну и наконец реализация механизма обработки прерываний

В машине для каждого класса прерываний имеется соответствующая ему рабочая область прерываний . Например, имеется область, соответствующая прерыванию по таймеру. Когда происходит прерывание по таймеру, содержимое всех регистров сохраняется в этой области (например, пропустив первые несколько слов). Затем из этих пропущенных слов извлекаются заранее занесенные туда значения, которые перезаписываются в счетчик (указатель) команд машины и в слово состояния (или во флаговый регистр). Загрузка и сохранение регистров осуществляется аппаратными средствами машины автоматически.

Загрузка счетчика команд новым значением адреса автоматически вызывает передачу управления на соответствующую команду. Этот адрес, заранее сохраненный в рабочей области прерывания, представляет собой начальный адрес стандартной программы обработки прерываний по таймеру. Загрузка слова состояния также вызывает определенные изменения в состоянии процессора.

После выполнения в ответ на запрос на прерывание любого требуемого действия стандартная программа обработки прерываний выполняет команду загрузки состояния процессора, в результате чего управление передается прерванной программе. Происходит это следующим образом: команда загрузки состояния процессора вызывает загрузку сохраненного содержимого слова состояния, счетчика команд и других регистров из соответствующих слов области сохранения, начиная с адреса, указанного в команде. Это приводит к восстановлению содержимого регистров и состояния процессора, которые были в момент прерывания. Управление затем передается на команду, перед выполнением которой произошло прерывание.

Сохранение и восстановление состояния процессора и содержимого регистров называют операцией контекстного переключения .

У большинства машин имеется так называемое слово состояния, которое содержит часть информации, используемой при обработке прерываний. Одним из элементов этого слова (например, первый) является признак, определяющий, в каком режиме находится процессор: в пользовательском или супервизора .

Обычные программы находятся в пользовательском режиме (признак равен нулю). Когда происходит прерывание, новое загружаемое содержимое слово состояния имеет признак, равный 1, что автоматически переводит процессор в режим супервизора. В этом режиме становится возможным использование привилегированных команд. Перед тем, как значение слова состояния будет сохранено, в другом его элементе (например, втором) будет установлено значение, указывающее на причину прерывания:

  • при программном прерывании отражается тип вызвавшего его условия, например деление на нуль.
  • при прерывании по вводу-выводу заносится номер канала, вызвавший прерывание.

В третьем элементе указывается, выполняет ли процессор команды или простаивает. В четвертом элементе содержится указатель, идентифицирующий текущую выполняемую программу. В пятом элементе содержится маска прерываний, которая используется для контроля за разрешением прерываний (поле MASK).

Это поле используется, чтобы не допустить наступления прерываний определенного типа, пока первое из них не будет обработано. В MASK каждый бит соответствует некоторому классу прерываний. Если какой-то бит установлен в 1, то прерывания соответствующего класса разрешены, если в 0, то запрещены. В последнем случае говорят, что они маскированы (их также называют запрещенными или закрытыми ). Однако маскированные прерывания не теряются, потому что сигнал, вызвавший прерывание, сохраняется аппаратурой. Временно задержанное таким способом прерывание называется отложенным . Когда (вследствие того, что значение MASK сброшено) прерывания соответствующего класса вновь разрешаются, сигнал опознается и происходит прерывание.

Маскирование прерываний находится под контролем операционной системы и зависит от значения MASK в слове состояния, которое заранее сохраняется в рабочей области каждого прерывания. Можно запретить все прерывания, установив все биты MASK в нуль. В действительности поступать подобным образом нет необходимости.

Прерывания подразделяются на аппаратные (маскируемые и немаскируемые) и программные. Программные прерывания, собственно, прерываниями не являются, это способ вызова определенных процедур. Но процессором программные прерывания обрабатываются как один из типов прерываний.

То, что в соответствии с PCI-спецификациями должны уметь все PCI-карты, но в действительности очень редко реализуется, называется "IRQ-Sharing". Теоретически это означает, что несколько компонент должны довольствоваться одним и тем же IRQ. Но поскольку лишь немногие PCI-карты общаются друг с другом столь гармонично, "Windows 9x" ставит в соответствие каждой карте, насколько это возможно, собственный IRQ. Сложности конфигурирования системных ресурсов, их распределения между сетевыми и звуковыми картами, 3D-ускорителями, стандартными последовательными и параллельными устройствами, а ныне еще видео — и DVD-декодерами постепенно ослабляются с массовым внедрением USB-шины, точнее массовым распространением USB-периферии. Правда, шина USB сама занимает один IRQ. Но зато она обязана включить в систему без дальнейшего расходования ресурсов все периферийные устройства, будь то мышь, клавиатура, сканер или видеокамера.

Еще один термин. "Polling mode" — работа устройства без использования прерываний. Это встречается при работе с простыми SCSI-контроллерами на шине ISA.

Устройство

Комментарии

Системный таймер

Системное прерывание. Генерируется 91 раз за 5 сек. В данном качестве применяется со времени первого PC.

Клавиатура

Системное прерывание, генерируемое контроллером клавиатуры.

Контроллер прерываний

Каскадировано (связано) с IRQ9. Могут возникнуть конфликты, когда одновременно на IRQ2 и IRQ9 должны работать различные устройства. Его использование системой сохраняется для совместимости.

Используется вторым коммуникационным адаптером (UART2). Какое же устройство будет его генерировать? Это может быть второй последовательный порт COM2 (интегрирован на материнской плате), внутренний модем, настроенный на COM2 или COM4, или инфракрасный адаптер. Можно отключить UART2, но присвоить IRQ3 ничему не удастся. Делит одно и то же IRQ3 с COM4 (при наличии последнего). Возможен конфликт при одновременном использовании.

Устройство

Комментарии

Используется первым коммуникационным адаптером. Все практически идентично: генерируется первым последовательным портом COM1, модемом на COM1 или COM3 (за исключением инфрапорта). Делит одно и то же IRQ4 с COM3 (при наличии последнего). В системах с подключенной к COM1 мышью использовать COM3 не следует.

свободен

Прерывание изначально предназначалось для использования вторым параллельным портом LPT2. Практического применения такое решение не нашло, поэтому IRQ5 перешло в разряд свободных. В IBM XT на IRQ5 "висел" жесткий диск. Через некоторое время "Creative Labs", создавая звуковую карту "Sound Blaster Pro", нашла применение прерыванию. С тех пор IRQ5 стало излюбленным для большинства звуковых ISA-карт. Звуковые PCI-карты также иногда используют это прерывание для эмуляции "SB Pro". IRQ5 можно привязать к слоту PCI.

Устройство

Комментарии

Контроллер FDD-дисковода

Прерывание используется контроллером флоппи-дисковода, начиная с первых ПК. Однако прерывание все равно не может быть использовано: ISA-карты на работу с ним не рассчитаны, и к слоту PCI привязать его нельзя.

По умолчанию прерывание первого параллельного порта LPT1. При отключенном порте (если принтер отсутствует или рассчитан на USB) может использоваться различными устройствами: сетевыми, ISDN-картами. Это также "запасное" место для звуковых карт.

Часы реального времени (RTC)

Системное прерывание со времени первых IBM AT.

свободен

Каскадировано с IRQ2. В остальном может использоваться по усмотрению.

свободен

Может быть использовано по усмотрению. Устаревшие IDE-контроллеры на старых звуковых картах иногда используют это IRQ.

Устройство

Хорошо, когда после сборки или плановой модернизации компьютер с первого раза запускается и работает устойчиво и без глюков. Гораздо хуже, если возникают неожиданные проблемы - спонтанные перезагрузки и зависания, сбои программ, неработоспособность или "невидимость" устройств и т.п. Первая причина, которая обычно приходит в голову в таком случае, - конфликт прерываний. А хорошо ли мы знаем природу этого явления, достаточно ли подготовлены к борьбе с ним?

Что такое IRQ


Прерывания - это базовый механизм реакции системы на возникающие события. Аппаратные прерывания, называемые обычно IRQ (Interrupt ReQuest) - это физические сигналы, с помощью которых контроллер устройства информирует процессор о необходимости обработать некоторый запрос. Условно схема обработки прерывания выглядит следующим образом:
1) процессор получает сигнал прерывания и его номер;
2) по специальной таблице отыскивается адрес программы, ответственной за обработку прерывания с данным номером - обработчика прерывания;
3) процессор приостанавливает текущую работу и переключается на выполнение обработчика (в общем случае это некоторый драйвер);
4) драйвер получает доступ к устройству и проверяет причину возникновения прерывания;
5) запускаются запрошенные действия - инициализация, конфигурирование устройства, обмен данными и др.
6) драйвер завершает работу, и процессор возвращается к прерванной задаче.
Очевидно, что для корректной работы механизма прерываний необходимо выполнение двух условий: во-первых, сигнал запроса должен доходить до процессора и, во-вторых, драйвер-обработчик должен правильно реагировать на этот сигнал. В случае конфликта не соблюдается второе условие: сигнал прерывания приходит, но реакция на него оказывается неправильной, в результате чего мы имеем (в лучшем случае) неработоспособное устройство.

Конфликт

Можно сказать, что конфликт - это ситуация, при которой несколько объектов одновременно пытаются получить доступ к ресурсу, который предназначен только для одного из них. Конфликт прерываний возникает в том случае, если несколько устройств используют одну и ту же линию прерывания для посылки сигнала запроса и нет механизма, позволяющего обрабатывать конкурирующие запросы. Если драйвер, получая управление, работает не с тем устройством, которое послало запрос, то либо происходит сбой, либо одно из устройств попросту не работает.
Возникает вопрос: могут ли несколько устройств использовать одну и ту же линию прерывания, или это в принципе невозможно? Ведь если драйвер сможет определить, от кого именно пришел запрос, то он будет реагировать на сигналы только "своего" устройства, игнорируя все остальные. Но это должно быть каким-либо образом заранее оговорено, иначе конфликт неизбежен.
Локальная шина PCI была спроектирована с учетом совместного использования прерываний. Каждое устройство PCI должно корректно работать на одной линии прерывания с другими PCI-устройствами. Это сделано следующим образом: факт наличия сигнала на линии прерывания определяется не по фронту, т.е. изменению уровня напряжения, а по самому факту наличия определенного напряжения. Изменять напряжение в линии может сразу несколько устройств, становясь как бы в очередь на обслуживание.
Таким образом, совместное использование одного IRQ несколькими PCI-устройствами не является конфликтом по определению. Однако иногда проблемы все-таки возникают. Во-первых, не все устройства PCI корректно работают на одной линии прерывания с другими. Во-вторых, иногда драйверы имеют ошибки, из-за которых они не могут правильно определять источник сигнала, мешая другим драйверам. В-третьих, далеко не все устройства работают на шине PCI; например, ISA-устройства, к которым относятся, например, контроллеры COM/LPT-портов, делить прерывания с другими не умеют. Чтобы четко представлять себе, как можно избежать конфликтов или устранить их, нужно разобраться в механизме управления IRQ.

Организация аппаратных прерываний в персональном компьютере


Как вы знаете, персональные компьютеры начались с IBM PC. Его архитектура предусматривала восемь линий аппаратных прерываний (IRQ), которыми управлял специальный контроллер. Каждой из них назначался номер, который определял приоритет прерывания и адрес его обработчика (так называемый вектор прерывания). Новая архитектура, IBM PC AT, предусматривала еще восемь линий прерываний, для которых использовался второй контроллер, подключаемый к одной из линий прерывания первого контроллера. К сожалению, данная архитектура стала последней после того, как фирма IBM потеряла возможность управлять развитием созданной ею платформы, поэтому все современные компьютеры по-прежнему имеют только шестнадцать прерываний, одно из которых используется вторым контроллером.
У компьютера IBM PC AT была только одна шина, по которой устройства могли общаться с процессором и памятью - ISA. Большинство линий прерываний были закреплены за стандартными ISA-устройствами, оставшиеся были зарезервированы на будущее. Когда это будущее наступило, выяснилось, что новой универсальной шине PCI досталось всего четыре свободных прерывания. Поэтому и был придуман хитрый механизм совместного использования прерываний (IRQ Sharing) и динамического переопределения номеров (IRQ Steering или Mapping).
Суть механизма управления прерываниями PCI-устройств в следующем. В общем случае существует четыре физических линии PCI-прерываний, называемых PIRQ0, PIRQ1, PIRQ2 и PIRQ3. Они подключены к контроллеру прерываний. Каждое PCI-устройство со своей стороны как бы имеет четыре разъема, называемые INT A, INT B, INT C и INT D. Подключать линии к разъемам можно в любом порядке. Например, для первого PCI-слота можно сделать такую разводку: PIRQ0 - INT A, PIRQ1 - INT B, PIRQ2 - INT C, PIRQ3 - INT D. А для второго - по-другому: PIRQ0 - INT B, PIRQ1 - INT C, PIRQ2 - INT D, PIRQ3 - INT A. Обычно устройство требует только одну линию прерывания, подключенную к INT A. Будучи установленным в первый слот, устройство использует линию PIRQ0, а во втором слоте на том же контакте будет линия PIRQ1. Тем самым устройства в разных слотах будут использовать разные физические линии прерываний. Аппаратный конфликт между ними будет исключен.
Шина AGP, являясь по сути специализированной модификацией PCI, тоже использует одну из линий PIRQ - обычно PIRQ0.
Для современных систем четырех линий оказывается недостаточно, поэтому в новых чипсетах часто применяются восемь линий PIRQ, которые точно так же в разных комбинациях подключаются к слотам PCI и встроенным в плату устройствам.
Линии PIRQ подключаются к контроллеру прерываний. Им, как и другим линиям, назначаются логические IRQ-номера. Если на одной физической линии находятся несколько устройств (а это допустимо), то все они будут иметь один и тот же номер IRQ. Если устройства находятся на разных физических линиях, они все равно могут получить одинаковые номера IRQ. Нормальные драйверы позволят им свободно работать без потери производительности, так как шина PCI все равно может захватываться только одним устройством. Главное - распознать, от какого устройства пришел сигнал.
Номера линиям PIRQ назначаются автоматически благодаря пресловутому механизму Plug&Play. Но ведь есть и ISA-устройства, поддерживающие Plug&Play. Они тоже имеют возможность автоматически получить номер IRQ. Но их линия прерывания принадлежит им монопольно, и если такой же номер получит одна из линий PIRQ, возникнет неразрешимый конфликт.
Итак, мы выяснили, что устройства PCI должны быть лишены проблем с конфликтами IRQ. Если они, конечно, правильно работают, а так бывает не всегда. К тому же драйверы должны поддерживать механизм совместного использования прерываний. Устройства ISA не умеют делиться линиями прерываний и потому являются провокаторами конфликтов. Следовательно, задача устранения конфликтов сводится к правильному распределению номеров (источник проблем - ISA-устройства и "кривые" драйверы) или к разведению по разным физическим линиям ("кривые" PCI-контроллеры).
Давайте рассмотрим, каким образом в системе происходит распределение номеров и как мы можем повлиять на этот процесс.

Карта прерываний

Как я уже говорил, большинство номеров IRQ уже заняты стандартными устройствами, точнее, назначены их линиям прерываний. Пройдемся по порядку:
0 - системный таймер (номер всегда занят);
1 - клавиатура (номер всегда занят);
2 - второй контроллер прерываний (всегда занят);
3 - порт COM2 (может быть отключен, а номер - освобожден);
4 - порт COM1 (может быть отключен, а номер - освобожден);
5 - порт LPT2 (обычно номер свободен);
6 - контроллер гибких дисков (может быть отключен, а номер - освобожден);
7 - порт LPT1 (если не в режиме EPP или ECP, то номер свободен);
8 - часы реального времени (всегда занят);
9 - свободен;
10 - свободен;
11 - свободен;
12 - мышь PS/2 (может быть свободен, если нет такой мыши);
13 - сопроцессор (всегда занят);
14 и 15 - контроллер жестких дисков (может быть отключен, а номер - освобожден).
В типичной системе свободны номера 5, 7, 9-11, то есть пять из пятнадцати. Кроме того, можно смело отключить COM2 и LPT1-порты, увеличив число свободных номеров до семи. Свободны - не значит, что не заняты, просто между ними возможна свободная перетасовка.
В любой системе имеется три стандартных PCI-устройства - ACPI-, USB-контроллеры и видеокарта, каждое из которых займет по одному номеру. Сложное устройство (например, звуковая карта) может потребовать несколько линий - INT A, INT B и т.д. для своих компонентов, которые между собой не будут конфликтовать (как-никак разные физические линии), а вот с другими устройствами - запросто.
Узнать, как в данный момент распределены номера прерываний, можно несколькими способами. В самом начале загрузки компьютера появляется текстовая таблица конфигурации. Сразу после нее идет перечень PCI-устройств с указанием назначенного им номера IRQ (см. скриншот). Другой способ работает в Windows 9x. В панели управления есть иконка "Система", в вызываемом апплете - закладка "Устройства". Выбираем свойства устройства "Компьютер", и там будут перечислены все устройства с указанием их IRQ (см. скриншот).
В Windows 2000 у нас нет доступа к управлению прерываниями, поэтому для просмотра списка IRQ нужно воспользоваться стандартной информационной утилитой (Панель управления/Администрирование/Управление компьютером/Сведения о системе/Ресурсы аппаратуры).

Распределение номеров IRQ средствами BIOS

В системе номера IRQ распределяются между физическими линиями дважды. Первый раз это делает системный BIOS при начальной загрузке системы. Каждому Plug&Play-устройству (все PCI, современные ISA, интегрированные устройства), а точнее, его линии прерывания, назначается один номер из десяти возможных. Если номеров не хватает, несколько линий получают один общий. Если это линии PIRQ, то ничего страшного - при наличии нормальных драйверов и поддержки со стороны операционной системы (об этом см. ниже) все будет работать. А если один номер получают несколько ISA-устройств или PCI- и ISA-устройства, то конфликт просто неизбежен, и тогда нужно вмешиваться в процесс распределения.
Прежде всего, нужно отключить все неиспользуемые ISA-устройства (в системах без слотов ISA они тоже присутствуют) - порты COM1, COM2 и дисковод. Также можно отключить режимы EPP и ECP порта LPT, тогда прерывание IRQ7 станет доступно.
В BIOS Setup нам понадобится раздел "PCI/PNP Configuration". Есть два базовых способа повлиять на распределения номеров IRQ: заблокировать конкретный номер и напрямую назначить номер линии PIRQ.
Первый способ доступен для всех BIOS: найдите список пунктов "IRQ x used by:" (в новых BIOS скрывается в подменю "IRQ Resources"). Тем прерываниям, которые должны быть назначены исключительно ISA-устройствам, нужно поставить "Legacy ISA". Тем самым при раздаче номеров PCI-устройствам данные прерывания будут пропущены. Поступать так следует в том случае, если какое-либо ISA-устройство упорно становится на одно прерывание с PCI-устройством, из-за чего оба не работают. Тогда мы находим номер этого IRQ и блокируем его в BIOS Setup. PCI-устройство переходит на новый номер IRQ, а ISA-устройство остается. Конфликт разрешен.
Второй, более удобный способ управления номерами IRQ - прямое назначение. В том же подменю BIOS Setup могут быть пункты вида "Slot X use IRQ" (другие названия: "PIRQx use IRQ", "PCI Slot x priority", "INT Pin x IRQ").
С их помощью каждой из четырех линии PIRQ можно назначить конкретный номер. Кстати, в новых AwardBIOS 6.00 можно наблюдать, какие именно устройства (включая встроенные) используют ту или иную линию. Просто посмотрите на правую часть экрана BIOS Setup: на фото показано, как я навел курсор на пункт "Slot 1/5 use IRQ no.", а справа появилась надпись "Display Contr.". То есть первая линия PIRQ используется видеокартой. Если я сейчас поставлю какой-либо определенный номер вместо "Auto", видеокарта будет переведена на это прерывание.

Распределение номеров IRQ средствами Windows

Второй раз номера прерываний распределяются операционной системой. Как показали проведенные мной эксперименты, Windows"98 начинает вмешиваться в произведенные BIOS"ом действия только в крайних случаях. При наличии нормального BIOS описанные здесь приемы не понадобятся.
Следует заметить, что для правильной работы механизмов совместного использования IRQ и динамического распределения необходимо, чтобы Windows распознала чипсет материнской платы и загрузила IRQ Miniport. Чем более свежая версия у Windows, тем больше чипсетов поддерживает ее собственный минипорт (PCIIMP.PCI). Однако всегда лучше перестраховаться и установить самые свежие драйверы чипсета.
В Windows 98 управление системой распределения IRQ осуществляется с помощью стандартного менеджера устройств. В списке системных устройств нужно найти шину PCI. В ее свойствах есть особая закладка (см. скриншот). Если все настроено правильно, там будет упомянут минипорт ("успешно загружен"), а управление шиной PCI (Steering) будет включено. Таким образом, Windows"98 имеет средства для управления распределением номеров прерываний между физическими линиями. Но поскольку и BIOS чаще всего с этим хорошо справляется, этот механизм не задействуется.
Но иногда он просто необходим. Как я уже говорил, PCI-устройства не должны конфликтовать в случае, если они используют одно и то же логическое прерывание. Другое дело - ISA-устройства, к которым относятся также и COM- и LPT-порты. Если устройство не-Plug&Play, BIOS может его и не заметить, отдав занятое им прерывание PCI-устройству. Тогда нужно прерывание зарезервировать. Это делается в диспетчере устройств Windows"98: выбираем устройство "Компьютер", вызываем его свойства, переключаемся на вторую закладку. Дальше все понятно.
Кроме резервирования, можно непосредственно задать номер прерывания для устройства. Для этого нужно в его свойствах найти закладку "Ресурсы", отключить автоматическую настройку и попытаться изменить назначенный номер прерывания.
К сожалению, это работает далеко не всегда.
Windows 2000 - система особая. Если у вас современный компьютер, то он наверняка поддерживает интерфейс конфигурирования ACPI. Windows 2000 в таком случае вообще проигнорирует действия BIOS и "повесит" все PCI-устройства на одно логическое прерывание. В общем случае это будет отлично работать (когда нет ISA), но иногда случаются проблемы. Чтобы получить возможность изменять номера прерываний, нужно либо поменять HAL-ядро, либо переустановить Windows 2000 с отключенным в BIOS ACPI. Замена ядра производится так: в диспетчере устройств выбирайте "Компьютер"/"Компьютер с ACPI", меняйте драйвер на "Стандартный компьютер", перезагружайтесь. Если это не поможет, придется переустановить Windows 2000 заново.
Надеюсь, приведенная выше информация поможет вам в борьбе с глюками "железа". И помните: большинство возникающих проблем связано с низким уровнем компьютерной грамотности хозяина компьютера. Поэтому нужно всегда стремиться к самообразованию, тогда и проблем будет поменьше, а те, что все-таки возникнут - не будут казаться неразрешимыми.


© 2024
zane-host.ru - Программы. Компьютеры. Сетевое оборудование. Оргтехника