31.07.2023

Принципы распознавания образов. Технология автоматического распознавания образов. История распознавания образов


В целом, можно выделить три метода распознавания образов: Метод перебора. В этом случае производится сравнение с базой данных, где для каждого вида объектов представлены всевозможные модификации отображения. Например, для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями, деформациями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д. В случае распознавания звуковых образов, соответственно, происходит сравнение с некоторыми известными шаблонами (например, слово, произнесенное несколькими людьми).

Второй подход - производится более глубокий анализ характеристик образа. В случае оптического распознавания это может быть определение различных геометрических характеристик. Звуковой образец в этом случае подвергается частотному, амплитудному анализу и т. д.

Следующий метод - использование искусственных нейронных сетей (ИНС). Этот метод требует либо большого количества примеров задачи распознавания при обучении, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Тем не менее, его отличает более высокая эффективность и производительность.

4. История распознавания образов

Рассмотрим кратко математический формализм распознавания образов. Объект в распознавании образов описывается совокупностью основных характеристик (признаков, свойств). Основные характеристики могут иметь различную природу: они могут браться из упорядоченного множества типа вещественной прямой, либо из дискретного множества (которое, впрочем, так же может быть наделено структурой). Такое понимание объекта согласуется как потребностью практических приложений распознавания образов, так и с нашим пониманием механизма восприятия объекта человеком. Действительно, мы полагаем, что при наблюдении (измерении) объекта человеком, сведения о нем поступают по конечному числу сенсоров (анализируемых каналов) в мозг, и каждому сенсору можно сопоставить соответствующую характеристику объекта. Помимо признаков, соответствующих нашим измерениям объекта, существует так же выделенный признак, либо группа признаков, которые мы называем классифицирующими признаками, и в выяснении их значений при заданном векторе Х и состоит задача, которую выполняют естественные и искусственные распознающие системы.

Понятно, что для того, чтобы установить значения этих признаков, необходимо иметь информацию о том, как связаны известные признаки с классифицирующими. Информация об этой связи задается в форме прецедентов, то есть множества описаний объектов с известными значениями классифицирующих признаков. И по этой прецедентной информации и требуется построить решающее правило, которое будет ставить произвольному описанию объекта значения его классифицирующих признаков.

Такое понимание задачи распознавания образов утвердилось в науке начиная с 50-х годов прошлого века. И тогда же было замечено что такая постановка вовсе не является новой. С подобной формулировкой сталкивались и уже существовали вполне не плохо зарекомендовавшие себя методы статистического анализа данных, которые активно использовались для многих практических задач, таких как например, техническая диагностика. Поэтому первые шаги распознавания образов прошли под знаком статистического подхода, который и диктовал основную проблематику.

Статистический подход основывается на идее, что исходное пространство объектов представляет собой вероятностное пространство, а признаки (характеристики) объектов являют собой случайные величины заданные на нем. Тогда задача исследователя данных состояла в том, чтобы из некоторых соображений выдвинуть статистическую гипотезу о распределении признаков, а точнее о зависимости классифицирующих признаков от остальных. Статистическая гипотеза, как правило, представляла собой параметрически заданное множество функций распределения признаков. Типичной и классической статистической гипотезой является гипотеза о нормальности этого распределения (разновидностей таких гипотез статистики придумали великое множество). После формулировки гипотезы оставалось проверить эту гипотезу на прецедентных данных. Это проверка состояла в выборе некоторого распределения из первоначально заданного множества распределений (параметра гипотезы о распределении) и оценки надежности(доверительного интервала) этого выбора. Собственно эта функция распределения и была ответом к задаче, только объект классифицировался уже не однозначно, но с некоторыми вероятностями принадлежности к классам. Статистиками были разработано так же и ассимптотическое обоснование таких методов. Такие обоснования делались по следующей схеме: устанавливался некоторый функционал качества выбора распределения (доверительный интервал) и показывалось, что при увеличении числа прецедентов, наш выбор с вероятностью стремящейся к 1 становился верным в смысле этого функционала (доверительный интервал стремился к 0). Забегая вперед скажем, что статистический взгляд на проблему распознавания оказался весьма плодотворным не только в смысле разработанных алгоритмов (в число которых входят методы кластерного, дискриминантного анализов, непараметрическая регрессия и т.д.), но и привел впоследствии Вапника к созданию глубокой статистической теории распознавания.

Тем не менее существует серьезная аргументация в пользу того, что задачи распознавания образов не сводятся к статистике. Любую такую задачу, в принципе, можно рассматривать со статистической точки зрения и результаты ее решения могут интерпретироваться статистически. Для этого необходимо лишь предположить, что пространство объектов задачи является вероятностным. Но с точки зрения инструментализма, критерием удачности статистической интерпретации некоторого метода распознавания может служить лишь наличие обоснавания этого метода на языке статистики как раздела математики. Под обоснаванием здесь понимается выработка основных требований к задаче которые обеспечивают успех в применении этого метода. Однако на данный момент для большей части методов распознавания, в том числе и для тех, которые напрямую возникли в рамках статистического подхода, подобных удовлетворительных обоснований не найдено. Кроме этого, наиболее часто применяемые на данный момент статистические алгоритмы, типа линейного дискриминанта Фишера, парзеновского окна, EM-алгоритма, метода ближайших соседей, не говоря уже о байесовских сетях доверия, имеют сильно выраженный эвристический характер и могут иметь интерпретации отличные от статистических. И наконец, ко всему вышесказанному следует добавить, что помимо асимптотического поведения методов распознавания, которое и является основным вопросом статистики, практика распознавания ставит вопросы вычислительной и структурной сложности методов, которые выводят далеко за рамки одной лишь теории вероятностей.

Итого, вопреки стремлениям статистиков рассматривать распознавание образов как раздел статистики, в практику и идеологию распознавания входили совершенно другие идеи. Одна из них была вызвана исследованиями в области распознавания зрительных образов и основана на следующей аналогии.

Как уже отмечалось, в повседневной жизни люди постоянно решают (зачастую бессознательно) проблемы распознавания различных ситуаций, слуховых и зрительных образов. Подобная способность для ЭВМ представляет собой в лучшем случае дело будущего. Отсюда некоторыми пионерами распознавания образов был сделан вывод, что решение этих проблем на ЭВМ должно в общих чертах моделировать процессы человеческого мышления. Наиболее известной попыткой подойти к проблеме с этой стороны было знаменитое исследование Ф. Розенблатта по перцептронам .

К середине 50-х годов казалось, что нейрофизиологами были поняты физические принципы работы мозга (в книге "Новый Разум Короля" знаменитый британский физик-теоретик Р. Пенроуз интересно ставит под сомнение нейросетевую модель мозга, обосновывая существенную роль в его функционировании квантово-механических эффектов; хотя, впрочем, эта модель подвергалась сомнению с самого начала. Отталкиваясь от этих открытий Ф.Розенблатт разработал модель обучения распознаванию зрительных образов, названную им персептроном. Персептрон Розенблатта представляет собой следующую функцию (рис. 1):

Рис 1. Схема Персептрона

На входе персептрон получает вектор объекта, который в работах Розенблатта представлял собой бинарный вектор, показывавший какой из пикселов экрана зачернен изображением а какой нет. Далее каждый из признаков подается на вход нейрона, действие которого представляет собой простое умножение на некоторый вес нейрона. Результаты подаются на последний нейрон, который их складывает и общую сумму сравнивает с некоторым порогом. В зависимости от результатов сравнения входной объект Х признается нужным образом либо нет. Тогда задача обучения распознаванию образов состояла в таком подборе весов нейронов и значения порога, чтобы персептрон давал на прецедентных зрительных образах правильные ответы. Розенблатт полагал, что получившаяся функция будет неплохо распознавать нужный зрительный образ даже если входного объекта и не было среди прецедентов. Из бионических соображений им так же был придуман и метод подбора весов и порога, на котором останавливаться мы не будем. Скажем лишь, что его подход оказался успешным в ряде задач распознавания и породил собой целое направление исследований алгоритмов обучения основанных на нейронных сетях, частным случаем которых и является персептрон.

Далее были придуманы различные обобщения персептрона, функция нейронов была усложнена: нейроны теперь могли не только умножать входные числа или складывать их и сравнивать результат с порогами, но применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений нейрона:

Рис. 2 Схема нейронной сети.

Кроме того топология нейронной сети могла быть значительно сложнее той, что рассматривал Розенблатт, например такой:

Рис. 3. Схема нейронной сети Розенблатта.

Усложнения приводили к увеличению числа настраиваемых параметров при обучении, но при этом увеличивали возможность настраиваться на очень сложные закономерности. Исследования в этой области сейчас идут по двум тесно связанным направлениям - изучаются и различные топологии сетей и различные методы настроек.

Нейронные сети на данный момент являются не только инструментом решения задач распознавания образов, но получили применение в исследованиях по ассоциативной памяти, сжатию изображений. Хотя это направление исследований и пересекается сильно с проблематикой распознавания образов, но представляет собой отдельный раздел кибернетики. Для распознавателя на данный момент, нейронные сети не более чем очень специфически определенное, параметрически заданное множество отображений, которое в этом смысле не имеет каких-либо существенных преимуществ над многими другим подобными моделями обучения которые далее будут кратко перечислены.

В связи с данной оценкой роли нейронных сетей для собственно распознавания (то есть не для бионики, для которой они имеют первостепенное значение уже сейчас) хотелось бы отметить следующее: нейронные сети, будучи чрезвычайно сложным объектом для математического анализа, при грамотном их использовании, позволяют находить весьма нетривиальные законы в данных. Их трудность для анализа, в общем случае, объясняется их сложной структурой и как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей. Но эти достоинства, как это часто и бывает, являются источником потенциальных ошибок, возможности переобучения. Как будет рассказано далее, подобный двоякий взгляд на перспективы всякой модели обучения является одним из принципов машинного обучения.

Еще одним популярным направлением в распознавании являются логические правила и деревья решений. В сравнении с вышеупомянутыми методами распознавания эти методы наиболее активно используют идею выражения наших знаний о предметной области в виде, вероятно самых естественных (на сознательном уровне) структур - логических правил. Под элементарным логическим правилом подразумевается высказывание типа «если неклассифицируемые признаки находятся в соотношении X то классифицируемые находятся в соотношении Y». Примером такого правила в медицинской диагностике служит следующее: если возраст пациента выше 60 лет и ранее он перенёс инфаркт, то операцию не делать - риск отрицательного исхода велик.

Для поиска логических правил в данных необходимы 2 вещи: определить меру «информативности» правила и пространство правил. И задача поиска правил после этого превращается в задачу полного либо частичного перебора в пространстве правил с целью нахождения наиболее информативных из них. Определение информативности может быть введено самыми различными способами и мы не будем останавливаться на этом, считая что это тоже некоторый параметр модели. Пространство же поиска определяется стандартно.

После нахождения достаточно информативных правил наступает фаза «сборки» правил в конечный классификатор. Не обсуждая глубоко проблемы которые здесь возникают (а их возникает немалое количество) перечислим 2 основных способа «сборки». Первый тип - линейный список. Второй тип – взвешенное голосование, когда каждому правилу ставится в соответствие некоторый вес, и объект относится классификатором к тому классу за который проголосовало наибольшее количество правил.

В действительности, этап построения правил и этап «сборки» выполняются сообща и, при построении взвешенного голосования либо списка, поиск правил на частях прецедентных данных вызывается снова и снова, чтобы обеспечить лучшее согласование данных и модели.

Современные роботы, снабженные системами технического зрения, способны хорошо видеть, чтобы работать с реальным миром. Они могут делать заключение о том, какого типа объекты присутствуют, в каких отношениях они находятся между собой, какие группы образуют.

Суть задачи распознавания – установить, обладают ли изучаемые объекты фиксированным конечным набором признаков, позволяющим отнести и ке определенному классу.

Цели науки распознавания образов:

Замена человеческого эксперта или сложной экспертной системы более простой системой (автоматизация деятельности человека или упрощение сложных систем);

Построение обучающихся систем, которые умеют принимать решения без указания четких правил, а именно, систем, которые умеют сами синтезировать правила принятия решений на основе некоторого конечного количества «продемонстрированных» системе примеров правильных решений.

Задачи распознавания можно охарактеризовать следующим образом.

1.Это информационные задачи, состоящие из двух основных этапов: приведение исходных данных к виду, удобному для распознавания и собственно распознавание.

2. В эти задачах можно вводить понятие аналогии Ии подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объекта в определенный класс.

3. В этих задачах можно оперировать набором примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.

4. Для этих задач трудно строить формальные теории и применять классические математические методы.

5. В этих задачах возможна «плохая» информация.

Типы задач распознавания:

Отнесение предъявленного объекта к одному из классов (обучение с учителем);

Автоматическая классификация – разбиение множества объектов (ситуаций) по их описанияю на систему непересекающихся классов;

Выбор набора информатиыных признаков при распощнавании;

Приведение исходных данных к виду, удобному для распознавания;

Динамическое распознавание и динамическая классификация;

Задачи прогнозирования.

Основные определения

Образ – этоcтруктурированное описание объекта или явления, представленное вектором признаков, каждый элемент которого представляет числовое значение одного из признаков, характеризующих данный объект. Другими словами: образ - любой объект, для которого можно измерить набор определенных числовых признаков. Пример образа: буква, изображение, кардиограмма, и т.п.

Числовой признак (или просто признак). – это формула или иное описание способа сопоставления объекту некоторой числовой характеристики, которое действует в рамках конкретной задачи распознавания образов. Для каждого объекта может быть определено несколько различных признаков, то есть несколько числовых характеристик.

Пространство признаков .N-мерное пространство, определенное для данной задачи распознавания, гдеN– фиксированное число измеряемых признаков для любых объектов. Вектор из пространства признаков, соответствующий объекту задачи распознавания этоN-мерный вектор с компонентами (х1,х2, …, хN), которые являются значениями признаков данного объекта.

ОБЪЕКТ->Nпризнаков->M-мерный вектор признаков

Класс - неформализируемое (как правило) представление о возможности отнесения произвольного объекта из множества объектов задачи распознавания к определенной группе объектов. Для объектов одного класса предполагается наличие «схожести». Для задачи распознавания образов может быть определено произвольное количество классов, большее 1. Количество классов обозначается числомS.

В целом проблема распознавания образов состоит из двух частей: распознавания и обучении.

Распознавание образов заключается в классификации некоторой группы объектов на основе определенных требований. Объекты, относимые к одному классу образов, обладают общими свойствами. Требования, определяющие классификацию, могут быть различными, так как в различных ситуациях возникает необходимость в различных типах классификаций.

Например, при распознавании английских букв образуется 26 классов образов. Однако, чтобы отличить при распознавании английские буквы от китайских иероглифов, нужны лишь два класса образов.

Простейший подход к распознаванию образов заключается в сопоставлении с эталонами. В этом случае некоторое множество образов, по одному из каждого класса образов, хранится в памяти машины. Входной (распознаваемый) образ (неизвестного класса) сравнивается с эталоном каждого класса. Классификация основывается на заранее выбранном критерии соответствия или критерии подобия. Другими словами, если входной образ лучше соответствует эталону i-го класса образов, чем любому другому эталону, то входной образ классифицируется как принадлежащийi-му классу образов.

Недостаток этого подхода, т. е. сопоставления с эталоном, заключается в том, что в ряде случаев трудно выбрать подходящий эталон из каждого класса образов и установить необходимый критерий соответствия.

Более совершенный подход заключается в том, что классификация основывается на некотором множестве отобранных замеров, производимых на входных образах. Эти отобранные замеры, называемые «признаками», предполагаются инвариантными или малочувствительными по отношению к обычно встречающимся изменениям и искажениям и обладающими небольшой избыточностью.

Частный случай второго подхода «измерения признаков», при котором эталоны хранятся в виде измеренных признаков и в классификаторе используется специальный критерий классификации (сопоставление).

Признаки определяются разработчиками и должны быть инвариантны к ориентации, размеру и вариациям формы объектов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Новосибирский государственный университет экономики и управления «НИНХ»

Информационно-технический факультет

Кафедра прикладных информационных технологий

по дисциплине Нечеткая логика и нейронные сети

Распознавание образов

Направление: Бизнес-информатика (электронный бизнес)

Ф.И.О студента: Мазур Екатерина Витальевна

Проверил: Павлова Анна Илларионовна

Новосибирск 2016

  • Введение
  • 1. Понятие распознавания
    • 1.1 История развития
    • 1.2 Классификация методов распознавания образов
  • 2. Методы распознавания образов
  • 3. Общая характеристика задач распознавания образов и их типы
  • 4. Проблемы и перспективы развития распознавания образов
    • 4.1 Применение распознавания образов на практике
  • Заключение

Введение

Достаточно продолжительное время задача распознавания образов рассматривалась только с биологической точки зрения. При этом наблюдениям подвергались лишь качественные характеристики, которые не позволяли описать механизм функционирования.

Введённое Н.Винером в начале XX века понятие кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе), позволила в вопросах распознавания ввести количественные методы. То есть, представить данный процесс (по сути - природное явление) математическими методами.

Теория распознавания образов является одним из основных разделов кибернетики как в теоретическом, так и в прикладном плане. Так, автоматизация некоторых процессов предполагает создание устройств, способных реагировать на изменяющиеся характеристики внешней среды некоторым количеством положительных реакций.

Базой для решения задач такого уровня являются результаты классической теории статистических решений. В ее рамках строились алгоритмы определения класса, к которому может быть отнесен распознаваемый объект.

Цель данной работы - познакомиться с понятиями теории распознавания образов: раскрыть основные определения, изучить историю возникновения, выделить основные методы и принципы теории.

Актуальность темы заключается в том, что на данный момент распознавание образов - одно из ведущих направлений кибернетики. Так, в последние годы оно находит все большее применение: оно упрощает взаимодействие человека с компьютером и создает предпосылки для применения различных систем искусственного интеллекта.

распознавание образ применение

1. Понятие распознавания

Долгое время проблема распознавания привлекала внимание только ученых области прикладной математики. В результате, работы Р. Фишера, созданные в 20-х годах , привели к формированию дискриминантного анализа - одного из разделов теории и практики распознавания образов. В 40-х годах А. Н. Колмогоровым и А. Я. Хинчиным была поставлена цель о разделении смеси двух распределений. А в 50-60-е годы ХХ века на основе большого количества работ появилась теория статистических решений. В рамках кибернетики начало складываться новое направление, связанное с разработкой теоретических основ и практической реализацией механизмов, а также систем, предназначенных для распознавания объектов и процессов. Новая дисциплина получила название "Распознавание образов".

Распознавание образов (объектов) - это задача идентификации объекта по его изображению (оптическое распознавание), аудиозаписи (акустическое распознавание) или другим характеристикам. Образ - это классификационная группировка, которая позволяет объединить группу объектов по некоторым признакам. Образы обладают характерной чертой, проявляющейся в том, что ознакомление с конечным числом явлений из одного множества дает возможность узнать большое количество его представителей. В классической постановке задачи распознавания множество разбивается на части.

Одним из базовых определений также является и понятие множества. В компьютере множество - это набор неповторяющихся однотипных элементов. "Неповторяющихся" - значит, что элемент в множестве либо есть, либо нет. Универсальное множество включает все возможные элементы, пустое не содержит ни одного.

Методика отнесения элемента к какому-то образу называется решающим правилом. Еще одно важное понятие - метрика - определяет расстояние между элементами множества. Чем меньше это расстояние, тем больше схожи объекты (символы, звуки и др.), которые мы распознаем. Стандартно элементы задаются в виде набора чисел, а метрика - в виде какой-то функции. От выбора представления образов и реализации метрики зависит эффективность работы программы: одинаковый алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на факторы внешних похожих сигналов путем их многократного воздействия на систему. Самообучение отличается от обучения тем, что здесь дополнительная информация о реакции системе не сообщается.

Примерами задач распознавания образов являются:

Распознавание букв;

Распознавание штрих-кодов;

Распознавание автомобильных номеров;

Распознавание лиц и других биометрических данных;

Распознавание речи и др..

1.1 История развития

К середине 50-х годов Р. Пенроуз ставит под сомнение нейросетевую модель мозга, указывая на существенную роль в его функционировании квантово-механических эффектов. Отталкиваясь от этого, Ф.Розенблатт разработал модель обучения распознавания зрительных образов, названную персептроном.

Рисунок 1 - Схема Персептрона

Далее были придуманы различные обобщения персептрона, и функция нейронов была усложнена: нейроны смогли не только умножать входные числа и сравнивать результат с пороговыми значениями, но и применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений:

Рис. 2 Схема нейронной сети.

Кроме того, топология нейронной сети могла быть еще более усложненной. Например, такой:

Рисунок 3 - Схема нейронной сети Розенблатта.

Нейронные сети, будучи сложным объектом для математического анализа, при грамотном их использовании, позволяли находить весьма простые законы данных. Но это достоинство одновременно является и источником потенциальных ошибок. Трудность для анализа, в общем случае, объясняется только сложной структурой, но, как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей.

1.2 Классификация методов распознавания образов

Как мы уже отметили, распознаванием образов называются задачи установления отношений эквивалентности между определенными образами-моделями объектов реального или идеального мира.

Данные отношения определяют принадлежность распознаваемых объектов к каким-либо классам, которые рассматриваются как самостоятельные независимые единицы.

При построении алгоритмов распознавания эти классы могут задаваться исследователем, который пользуется собственными представлениями или использует дополнительную информацию о сходстве или различии объектов в контексте данной задачи. В данном случае говорят о "распознавании с учителем". В другом, т.е. когда автоматизированная система решает задачу классификации без привлечения дополнительной информации, говорят о "распознавании без учителя".

В работах В.А. Дюка дан академический обзор методов распознавания и используется два основных способа представления знаний:

Интенсиональное (в виде схемы связей между атрибутами);

Экстенсиональное с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над признаками объектов, приводящих к нужному результату. Интенсиональные представления реализуются через операции над значениями и не предполагают проведения операций над конкретными объектами.

В свою очередь экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как самостоятельные системы.

Таким образом, в основу классификации методов распознавания, предложенной В.А. Дюка, положены фундаментальные закономерности, которые лежат в основе человеческого способа познания в принципе. Это ставит данное деление на классы в особое положение по сравнению с другими менее известными классификациями, которые на этом фоне выглядят искусственными и неполными.

2. Методы распознавания образов

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций . В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания.Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом . Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей . Метод заключается в том, чтопри классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

3. Общая характеристика задач распознавания образов и их типы

Общая структура системы распознавания и ее этапы показаны на рисунке 4:

Рисунок 4 - Структура системы распознавания

Задачи распознавания имеют следующие характерные этапы:

Преобразование исходных данных к удобному виду для распознавания;

Распознавание (указание принадлежности объекта определенному классу).

В этих задачах можно вводить понятие подобия объектов и формулировать набор правил, на основании которых объект зачисляется в один или разные классы.

Так же можно оперировать набором примеров, классификация которых известна и которые в виде заданных описаний могут быть объявлены алгоритму распознавания для настройки на задачу в процессе обучения.

Трудности решения задач распознавания связаны с невозможностью применять без исправлений классические математические методы (часто в доступе нет информация для точной математической модели)

Выделяют следующие типы задач распознавания:

Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем);

Задача автоматической классификации - разбиение множества систему непересекающихся классов (таксономия, кластерный анализ, самообучение);

Задача выбора информативного набора атрибутов при распознавании;

Задача приведения исходных данных к удобному виду;

Динамическое распознавание и классификация;

Задача прогнозирования - то есть, решение должно относиться к определенному моменту в будущем.

В существующих системах распознавания есть две наиболее сложные проблемы:

Проблема «1001 класса» - добавление 1 класса к 1000 существующим вызывает трудности с переобучением системы и проверке данных, полученных до этого;

Проблема «соотношения словаря и источников» - наиболее сильно проявляется в распознавании речи. Текущие системы могут распознавать либо большое количество слов от небольшой группы лиц, либо мало слов от большой группы лиц. Так же трудно распознавать большое количество лиц с гримом или гримасами.

Нейронные сети не решают эти задачи напрямую, однако в силу своей природы они гораздо легче адаптируются к изменениям входных последовательностей.

4. Проблемы и перспективы развития распознавания образов

4.1 Применение распознавания образов на практике

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа независимых объектов с отнесением их к тому или другому классу. По итогу обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все другие. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему.

Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную, точную информацию. Такая информация представляет собой совокупность свойств объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Кроме того, объекты одного и того же образа могут сильно отличаться друг от друга.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться достаточно легкой и, наоборот, неудачно выбранное может привести к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Распознавание объектов, сигналов, ситуаций, явлений - самая часто встречающаяся задача, которую человеку необходимо решать ежесекундно. Для этого используются огромные ресурсы мозга, который оценивается таким показателем как число нейронов, равное 10 10 .

Также, распознавание постоянно встречается в технике. Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность и успел превратиться в инженерную дисциплину, связанную с производством коммерческих продуктов. В большом объеме ведутся работы по созданию элементной базы для нейровычислений.

Основной их характерной чертой является способность решать неформализованные проблемы, для которых в силу тех или иных причин не предполагается алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию получения алгоритмов путем обучения. В этом их основное преимущество. Поэтому нейрокомпьютинг оказывается актуальным именно сейчас - в период расцвета мультимедиа, когда глобальное развитие требует разработки новых технологий, тесно связанных с распознаванием образов.

Одной из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах распознавания. Дальнейшее развитие и проектирование компьютеров, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, нерешаемы без распознавания. Здесь уже встает вопрос о развитии робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Заключение

В результате работы был сделан краткий обзор основных определений понятий такого раздела кибернетики как распознавание образов, выделены методы распознавания, сформулированы задачи.

Безусловно, существует множество направлений по развитию данной науки. К тому же, как было сформулировано в одной из глав, распознавание - одно из ключевых направлений развития на данный момент. Так, программное обеспечение в ближайшие десятилетия может стать ещё более привлекательным для пользователя и конкурентоспособным на современном рынке, если приобретет коммерческий формат и начнет распространяться в рамках большого количества потребителей.

Дальнейшие исследования могут быть направлены на следующие аспекты: глубокий анализ основных методов обработки и разработка новых комбинированных или модифицированных методов для распознавания. На основании проведенных исследований можно будет разработать функциональную систему распознавания, с помощью которой возможно проверить выбранные методы распознавания на эффективность.

Список литературы

1. Дэвид Формайс, Жан Понс Компьютерное зрение. Современный подход, 2004

2. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин. - М.: Наука, 2004.

3. Журавлев Ю.И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. М.: Наука, 2005. - Вып. 33.

4. Мазуров В.Д. Комитеты систем неравенств и задача распознавания // Кибернетика, 2004, № 2.

5. Потапов А.С. Распознавание образов и машинное восприятие. - С-Пб.: Политехника, 2007.

6. Минский М., Пейперт С. Персептроны. - М.: Мир, 2007.

7. Растригин Л. А., Эренштейн Р. Х. Метод коллективного распознавания. М. Энергоиздат, 2006.

8. Рудаков К.В. Об алгебраической теории универсальных и локальных ограничений для задач классификации // Распознавание, классификация, прогноз. Математические методы и их применение. Вып. 1. - М.: Наука, 2007.

9. Фу К. Структурные методы в распознавании образов. - М.: Мир, 2005.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа , добавлен 15.01.2014

    Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация , добавлен 06.01.2014

    Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа , добавлен 13.10.2017

    Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.

    курсовая работа , добавлен 05.04.2015

    Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа , добавлен 15.08.2011

    Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа , добавлен 06.04.2014

    Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.

    реферат , добавлен 10.04.2010

    Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа , добавлен 21.06.2014

    Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа , добавлен 14.11.2013

    Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.

С задачей распознавания образов живые системы, в том числе и человек, сталкиваются постоянно с момента своего появления. В частности, информация, поступающая с органов чувств, обрабатывается мозгом, который в свою очередь сортирует информацию, обеспечивает принятие решения, а далее с помощью электрохимических импульсов передает необходимый сигнал далее, например, органам движения, которые реализуют необходимые действия. Затем происходит изменение окружающей обстановки, и вышеуказанные явления происходят заново. И если разобраться, то каждый этап сопровождается распознаванием.

С развитием вычислительной техники стало возможным решить ряд задач, возникающих в процессе жизнедеятельности, облегчить, ускорить, повысить качество результата. К примеру, работа различных систем жизнеобеспечения, взаимодействие человека с компьютером, появление роботизированных систем и др. Тем не менее, отметим, что обеспечить удовлетворительный результат в некоторых задачах (распознавание быстродвижущихся подобных объектов, рукописного текста) в настоящее время не удается.

Цель работы: изучить историю систем распознавания образов.

Указать качественные изменения произошедшие в области распознавания образов как теоретические, так и технические, с указанием причин;

Обсудить методы и принципы, применяемые в вычислительной технике;

Привести примеры перспектив, которые ожидаются в ближайшем будущем.

1. Что такое распознавание образов?

Первые исследования с вычислительной техникой в основном следовали классической схеме математического моделирования - математическая модель, алгоритм и расчет. Таковыми были задачи моделирования процессов происходящих при взрывах атомных бомб, расчета баллистических траекторий, экономических и прочих приложений. Однако помимо классических идей этого ряда возникали и методы основанные на совершенно иной природе, и как показывала практика решения некоторых задач, они зачастую давали лучший результат нежели решения, основанные на переусложненных математических моделях. Их идея заключалась в отказе от стремления создать исчерпывающую математическую модель изучаемого объекта (причем зачастую адекватные модели было практически невозможно построить), а вместо этого удовлетвориться ответом лишь на конкретные интересующие нас вопросы, причем эти ответы искать из общих для широкого класса задач соображений. К исследованиям такого рода относились распознавание зрительных образов, прогнозирование урожайности, уровня рек, задача различения нефтеносных и водоносных пластов по косвенным геофизическим данным и т. д. Конкретный ответ в этих задачах требовался в довольно простой форме, как например, принадлежность объекта одному из заранее фиксированных классов. А исходные данные этих задач, как правило, задавались в виде обрывочных сведений об изучаемых объектах, например в виде набора заранее расклассифицированных объектов. С математической точки зрения это означает, что распознавание образов (а так и был назван в нашей стране этот класс задач) представляет собой далеко идущее обобщение идеи экстраполяции функции.

Важность такой постановки для технических наук не вызывает никаких сомнений и уже это само по себе оправдывает многочисленные исследования в этой области. Однако задача распознавания образов имеет и более широкий аспект для естествознания (впрочем, было бы странно если нечто столь важное для искусственных кибернетических систем не u1080 имело бы значения для естественных). В контекст данной науки органично вошли и поставленные еще древними философами вопросы о природе нашего познания, нашей способности распознавать образы, закономерности, ситуации окружающего мира. В действительности, можно практически не сомневаться в том, что механизмы распознавания простейших образов, типа образов приближающегося опасного хищника или еды, сформировались значительно ранее, чем возник элементарный язык и формально-логический аппарат. И не вызывает никаких сомнений, что такие механизмы достаточно развиты и у высших животных, которым так же в жизнедеятельности крайне необходима способность различения достаточно сложной системы знаков природы. Таким образом, в природе мы видим, что феномен мышления и сознания явно базируется на способностях к распознаванию образов и дальнейший прогресс науки об интеллекте непосредственно связан с глубиной понимания фундаментальных законов распознавания. Понимая тот факт, что вышеперечисленные вопросы выходят далеко за рамки стандартного определения распознавания образов (в англоязычной литературе более распространен термин supervised learning), необходимо так же понимать, что они имеют глубокие связи с этим относительно узким(но все еще далеко неисчерпанным) направлением .

Уже сейчас распознавание образов плотно вошло в повседневную жизнь и является одним из самых насущных знаний современного инженера. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах этой дисциплины. Дальнейшее развитие искусственного интеллекта, в частности проектирование компьютеров пятого поколения, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, немыслимы без распознавания. Здесь рукой подать и до робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Именно поэтому к развитию распознавания образов с самого начала было приковано немало внимания со стороны специалистов самого различного профиля - кибернетиков, нейрофизиологов, психологов, математиков, экономистов и т.д. Во многом именно по этой причине современное распознавание образов само питается идеями этих дисциплин. Не претендуя на полноту (а на нее в небольшом эссе претендовать невозможно) опишем историю распознавания образов, ключевые идеи .

Определения

Прежде, чем приступить к основным методам распознавания образов, приведем несколько необходимых определений.

Распознавание образов (объектов, сигналов, ситуаций, явлений или процессов) - задача идентификации объекта или определения каких-либо его свойств по его изображению (оптическое распознавание) или аудиозаписи (акустическое распознавание) и другим характеристикам.

Одним из базовых является не имеющее конкретной формулировки понятие множества. В компьютере множество представляется набором неповторяющихся однотипных элементов. Слово "неповторяющихся" означает, что какой-то элемент в множестве либо есть, либо его там нет. Универсальное множество включает все возможные для решаемой задачи элементы, пустое не содержит ни одного.

Образ - классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. В классической постановке задачи распознавания универсальное множество разбивается на части-образы. Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.

Методика отнесения элемента к какому-либо образу называется решающим правилом. Еще одно важное понятие - метрика, способ определения расстояния между элементами универсального множества. Чем меньше это расстояние, тем более похожими являются объекты (символы, звуки и др.) - то, что мы распознаем. Обычно элементы задаются в виде набора чисел, а метрика - в виде функции. От выбора представления образов и реализации метрики зависит эффективность программы, один алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть "поощрениями" и "наказаниями". Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация - это процесс изменения параметров и структуры системы, а возможно - и управляющих воздействий, на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Обучение - это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация - это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.

Примеры задач распознавания образов: - Распознавание букв;

Образ, класс - классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку.

Образное восприятие мира - одно из загадочных свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в океане разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию воспринимаемых ощущений, т. е. разбиваем их на группы похожих, но не тождественных явлений. Например, несмотря на существенное различие, к одной группе относятся все буквы А, написанные различными почерками, или все звуки, которые соответствуют одной и той же ноте, взятой в любой октаве и на любом инструменте, а оператор, управляющий техническим объектом, на целое множество состояний объекта реагирует одной и той же реакцией. Характерно, что для составления понятия о группе восприятий определенного класса достаточно ознакомиться с незначительным количеством ее представителей. Ребенку можно показать всего один раз какую-либо букву, чтобы он смог найти эту букву в тексте, написанном различными шрифтами, или узнать ее, даже если она написана в умышленно искаженном виде. Это свойство мозга позволяет сформулировать такое понятие, как образ.

Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Примерами образов могут быть: река, море, жидкость, музыка Чайковского, стихи Маяковского и т. д. В качестве образа можно рассматривать и некоторую совокупность состояний объекта управления, причем вся эта совокупность состояний характеризуется тем, что для достижения заданной цели требуется одинаковое воздействие на объект . Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга.

Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания. Будучи отражением объективной реальности, понятие образа столь же объективно, как и сама реальность, а поэтому может быть само по себе объектом специального исследования.

В литературе, посвященной проблеме обучения распознавания образов (ОРО), часто вместо понятия образа вводится понятие класса.

Проблема обучения распознаванию образов (ОРО)

Одним из самых интересных свойств человеческого мозга является способность отвечать на бесконечное множество состояний внешней среды конечным числом реакций. Может быть, именно это свойство позволило человеку достигнуть высшей формы существования живой материи, выражающейся в способности к мышлению, т. е. активному отражению объективного мира в виде образов, понятий, суждений и т. д. Поэтому проблема ОРО возникла при изучении физиологических свойств мозга.

Рассмотрим пример задач из области ОРО.


Рис. 3.1.

Здесь представлены 12 изображений, и следует отобрать признаки, при помощи которых можно отличить левую триаду картинок от правой. Решение данных задач требует моделирования логического мышления в полном объеме.

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все объекты различных образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо картинки, либо другие визуальные изображения (буквы), либо различные явления внешнего мира, например, звуки, состояния организма при медицинском диагнозе, состояние технического объекта в системах управления и др. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.

Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы тесно связано с вопросом, который все чаще возникает в связи с развитием идей кибернетики: что может и что принципиально не может делать машина? В какой мере возможности машины могут быть приближены к возможностям живого мозга? В частности, может ли машина развить в себе способность перенять у человека умение производить определенные действия в зависимости от ситуаций, возникающих в окружающей среде? Пока стало ясно только то, что если человек может сначала сам осознать свое умение, а потом его описать, т. е. указать, почему он производит действия в ответ на каждое состояние внешней среды или как (по какому правилу) он объединяет отдельные объекты в образы, то такое умение без принципиальных трудностей может быть передано машине. Если же человек обладает умением, но не может объяснить его, то остается только один путь передачи умения машине - обучение примерами.

Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями. В каждой из таких задач анализируются некоторые явления, процессы, состояния внешнего мира, всюду далее называемые объектами наблюдения. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную информацию. Такая информация представляет собой характеристику объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать на нас по-разному, в зависимости от условий восприятия. Например, какая-либо буква, даже одинаково написанная, может в принципе как угодно смещаться относительно воспринимающих органов. Кроме того, объекты одного и того же образа могут достаточно сильно отличаться друг от друга и, естественно, по-разному воздействовать на воспринимающие органы.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.

При решении задач управления методами распознавания образов вместо термина "изображение" применяют термин "состояние". Состояние - это определенной формы отображение измеряемых текущих (или мгновенных) характеристик наблюдаемого объекта. Совокупность состояний определяет ситуацию. Понятие "ситуация" является аналогом понятия "образ". Но эта аналогия не полная, так как не всякий образ можно назвать ситуацией, хотя всякую ситуацию можно назвать образом.

Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждая из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является военная игра , то ситуация объединяет все состояния игры, которые требуют, например, мощного танкового удара при поддержке авиации.

Выбор исходного описания объектов является одной из центральных задач проблемы ОРО. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной, и наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения. Например, если решается задача распознавания объектов, отличающихся по цвету, а в качестве исходного описания выбраны сигналы, получаемые от датчиков веса, то задача распознавания в принципе не может быть решена.


© 2024
zane-host.ru - Программы. Компьютеры. Сетевое оборудование. Оргтехника